Molecular Breeding

, Volume 23, Issue 1, pp 85–97 | Cite as

Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis)

  • S. P. Feng
  • W. G. Li
  • H. S. Huang
  • J. Y. Wang
  • Y. T. Wu
Article

Abstract

Expressed sequence tags derived simple sequence repeats (EST-SSRs), are different from traditional genomic SSR (gSSR) markers. They are more likely to be embedded in the functional gene sequences, less costly and time effective, and may provide abundant information. By analysis of 10,018 expressed sequence tags (ESTs) out of 10,829 for rubber tree (Hevea brasiliensis) available in public domain DNA databases, 799 SSR loci were found in the 643 non-redundant SSR-ESTs (SSR-containing ESTs), corresponding to one SSR in every 2.25 kb of the ESTs in rubber tree transcriptome. Of the total 799 SSRs in these ESTs, 673 (84.2%) contained simple repeat motifs while 126 (15.8%) represented compound motif types. Of the total EST-SSRs, 45.3% (362/799) were mononucleotide repeats (MNRs), 42.2% (337/799) were dinucleotide repeats (DNRs), 11.9% (95/799) were trinucleotide repeats (TNRs) and 0.6% (5/799) were tetranucleotide repeats (TTNRs) and hexanucleotide repeats (HNRs). The repeat motifs AAG and AG were the most abundant without regard to single nucleotide repeat. A total of 184 primer pairs were successful designed based on the non-redundant SSR-ESTs. Using 55°C as annealing temperature, 110 primer pairs successfully amplified 12 H. brasiliensis cultivated varieties and four related species. Analysis on 74 alleles amplified by 30 randomly selected primer pairs indicated the medium polymorphism of the EST-SSRs developed. Based on 272 alleles detected by 87 EST-SSR markers, an assessment of genetic diversity was carried out on 12 H. brasiliensis cultivated varieties and four related species. In addition, investigation based on five selected EST-SSRs by cloning and sequencing cross some cultivated species and related species provided evidence for cross-species/genera transferability of the EST-SSR markers developed in this study.

Keywords

Expressed sequence tag derived simple sequence repeats (EST-SSRs) Rubber tree (Hevea brasiliensisPolymorphism Genetic diversity Cross-species/genera transferability 

Supplementary material

11032_2008_9216_MOESM1_ESM.xls (66 kb)
(XLS 66 kb)

References

  1. Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114:359–372. doi:10.1007/s00122-006-0440-x PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang ZH, Miller W et al (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389 PubMedCrossRefGoogle Scholar
  3. Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235. doi:10.1007/s00122-001-0775-2 PubMedCrossRefGoogle Scholar
  4. Baruah A, Naik V, Hendre PS, Rajkumar R, Rajendrakumar P, Aggarwal RK (2003) Isolation and characterization of nine microsatellite markers from Coffea arabica L., showing wide cross-species amplifications. Mol Ecol Notes 3:647–650. doi:10.1046/j.1471-8286.2003.00544.x CrossRefGoogle Scholar
  5. Besse P, Seguin M, Legrun P, Chevallier MH, Nicolas D, Lanaud C (1994) Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP analysis. Theor Appl Genet 88:199–207. doi:10.1007/BF00225898 CrossRefGoogle Scholar
  6. Bhat PR, Krishnakumar V, Hendre PS, Rajendrakumar P, Varshney RK, Aggarwal RK (2005) Identification and characterization of gene-derived EST-SSR markers from robusta coffee variety ‘CxR’ (an interspecific hybrid of Coffea canephora × Coffea congensis). Mol Ecol Notes 5:80–83. doi:10.1111/j.1471-8286.2004.00839.x CrossRefGoogle Scholar
  7. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  8. Bozhko M, Riegel R, Schubert R, Muller-Starck GA (2003) A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinit. Mol Ecol 12:3147–3155. doi:10.1046/j.1365-294X.2003.01983.x PubMedCrossRefGoogle Scholar
  9. Callow JA, Ford-Lloyd BV, Newbury HJ (1997) Biotechnology and plant genetic resources: conservation and use. CAB International, Wallingford, Oxon, UK, pp 49–76Google Scholar
  10. Cardle L, Ramsay L, Milbourne D, Macaulay M, Marshall D, Waugh R (2000) Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847–854PubMedGoogle Scholar
  11. Chen X, Cho YG, McCouch SR (2002) Sequence divergence of rice microsatellites in Oryza and other plant species. Mol Genet Genomics 268:331–343. doi:10.1007/s00438-002-0739-5 PubMedCrossRefGoogle Scholar
  12. Chen CX, Zhou P, Choi YA, Huang S, Gmitter FG Jr (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257. doi:10.1007/s00122-006-0226-1 PubMedCrossRefGoogle Scholar
  13. Chow KS, Wan KL, Isa MN, Bahari A, Tan SH, Harikrishna K et al (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58(10):2429–2440. doi:10.1093/jxb/erm093 PubMedCrossRefGoogle Scholar
  14. Clauss MJ, Cobban H, Mitchell-Olds T (2002) Crossspecies microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaceae). Mol Ecol 11:591–601. doi:10.1046/j.0962-1083.2002.01465.x PubMedCrossRefGoogle Scholar
  15. Combes MC, Andrzejewski S, Anthony F, Bertrand B, Rovelli P, Graziosi G et al (2000) Characterization of microsatellite loci in Coffea arabica and related coffee species. Genetics 156:847–854Google Scholar
  16. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123. doi:10.1016/S0168-9452(01)00365-X PubMedCrossRefGoogle Scholar
  17. Davierwala AP, Ramakrishna W, Chowdari V, Ranjekar PK, Gupta VS (2001) Potential of (GATA)n microsatellites from rice for inter-and intraspecific variability studies. BMC Evol Biol 1:7. doi:10.1186/1471-2148-1-7 PubMedCrossRefGoogle Scholar
  18. Decroocq V, Fave MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape microsatellite markers across taxa. Theor Appl Genet 106:912–922PubMedGoogle Scholar
  19. Dreisigacker S, Zhang P, Warburton ML, Ginkel MV (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci 44:381–388Google Scholar
  20. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Solation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407. doi:10.1007/s001220100738 PubMedCrossRefGoogle Scholar
  21. Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S et al (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108:1064–1070. doi:10.1007/s00122-003-1535-2 PubMedCrossRefGoogle Scholar
  22. Fraser LG, Harvey CF, Crowhurst RN, De Silva HN (2004) EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet 108:1010–1016. doi:10.1007/s00122-003-1517-4 PubMedCrossRefGoogle Scholar
  23. Gao LF, Tang J, Li H, Jia J (2003) Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol Breed 113:163–185Google Scholar
  24. Gao LZ, Zhang CH, Jia JZ (2005) Cross-species transferability of rice microsatellites in its wild relatives and the potential for conservation genetic studies. Genet Resour Crop Evol 52:931–940. doi:10.1007/s10722-003-6124-3 CrossRefGoogle Scholar
  25. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N et al (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811. doi:10.1007/s00122-004-1814-6 PubMedCrossRefGoogle Scholar
  26. Guen V, Lespinasse D, Oliver G, Rodier-Goud M, Pinard F, Seguin M (2003) Molecular mapping of genes conferring field resistance to South American Leaf Blight (Microcyclus ulei) in rubber tree. Theor Appl Genet 108:160–167. doi:10.1007/s00122-003-1407-9 PubMedCrossRefGoogle Scholar
  27. Guo WZ, Wang W, Zhou BL, Zhang TZ (2006) Cross-species transferability of G. arboreum-derived EST-SSRs in the diploid species of Gossypium. Theor Appl Genet 112:1573–1581. doi:10.1007/s00122-006-0261-y PubMedCrossRefGoogle Scholar
  28. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers fore genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185. doi:10.1023/A:1003910819967 CrossRefGoogle Scholar
  29. Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217. doi:10.1007/s00122-005-1951-6 PubMedCrossRefGoogle Scholar
  30. Holton TA, Christopher JT, McClure L, Harker N, Henry RJ (2002) Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat. Mol Breed 9:63–71. doi:10.1023/A:1026785207878 CrossRefGoogle Scholar
  31. Huang WG, Cipriani G, Morgante M, Testolin R (1998) Microsatellite DNA in Actinidia chinensis: isolation, characterization, and homology in related species. Theor Appl Genet 97:1269–1278. doi:10.1007/s001220051019 CrossRefGoogle Scholar
  32. Jung S, Albert A, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genomics 5:136–143. doi:10.1007/s10142-005-0139-0 PubMedCrossRefGoogle Scholar
  33. Kantety RM, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 148:501–510. doi:10.1023/A:1014875206165 CrossRefGoogle Scholar
  34. Ko JH, Chow KS, Han KH (2003) Transcriptome analysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (para rubber tree). Plant Mol Biol 53(4):479–492. doi:10.1023/B:PLAN.0000019119.66643.5d PubMedCrossRefGoogle Scholar
  35. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001) Generation and comparison of EST-derived SSRs and SNPs in barley (Houdeum Vulgare L.). Hereditas 135:145–151. doi:10.1111/j.1601-5223.2001.00145.x PubMedCrossRefGoogle Scholar
  36. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100:127–138. doi:10.1007/s001220050018 CrossRefGoogle Scholar
  37. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369. doi:10.1007/s00122-004-1635-7 PubMedCrossRefGoogle Scholar
  38. Low FC, Gale MD (1996) Development of molecular markers for Hevea. J Nat Rubb Res 6:152–157Google Scholar
  39. Luo H, Boutry M (1995) Phylogenetic relationships within Hevea brasiliensis as deduced from a polymorphic mitochondrial DNA region. Theor Appl Genet 91:876–884. doi:10.1007/BF00223895 CrossRefGoogle Scholar
  40. Miller RT, Christoffels AG, Gopalakrishnan C, Burke J, Ptitsyn AA, Broveak TR et al (1999) A comprehensive approach to clustering of expressed human gene sequence: the sequence tag alignment and consensus knowledge base. Genome Res 9:1143–1155. doi:10.1101/gr.9.11.1143 PubMedCrossRefGoogle Scholar
  41. Moncada P, McCouch S (2004) Simple sequence repeat diversity in diploid and tetraploid Coffea species. Genome 47:501–509. doi:10.1139/g03-129 PubMedCrossRefGoogle Scholar
  42. Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P et al (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805. doi:10.1007/s00122-004-1685-x PubMedCrossRefGoogle Scholar
  43. Peakall R, Gilmore S, Keys W (1998) Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287PubMedGoogle Scholar
  44. Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, deSouza AP (2006) Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed 125:378–384. doi:10.1111/j.1439-0523.2006.01227.x CrossRefGoogle Scholar
  45. Ramakrishna W, Davierwala AP, Gupta VS, Ranjekar PK (1998) Expansion of (GA)n dinucleotide at a microsatellite locus associated repeats (SSRs) within the genus and other legume genera. Biochem Genet 36:323–327. doi:10.1023/A:1018793328896 PubMedCrossRefGoogle Scholar
  46. Rota M, Kantety RV, Yu JK, Sorrells ME (2005) Non-random distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat and barley. BMC Genomics 6:23. doi:10.1186/1471-2164-6-23 PubMedCrossRefGoogle Scholar
  47. Rovelli P, Mettulio R, Anthony F (2000) Microsatellites in Coffea arabica L. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality. Kluwer, Dordrecht, pp 123–133Google Scholar
  48. Roy CB, Nazeer MA, Saha T (2004) Identification of simple sequence repeats in rubber (Hevea brasiliensis). Curr Sci 87(6)Google Scholar
  49. Schubert R, Mueller-Starck G, Riegel R (2001) Development of EST-PCR markers and monitoring their intrapopulational genetic variation in Picea abies (L.) Karst. Theor Appl Genet 103:1223–1231. doi:10.1007/s001220000501 CrossRefGoogle Scholar
  50. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS et al (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726. doi:10.1007/s001220051344 CrossRefGoogle Scholar
  51. Stack S, Campbell L, Henderson K, Eujayl I, Hanafey M, Powell W et al (2000) Development of EST-derived microsatellite markers for mapping and germplasm analysis in wheat. Plant & Animal Genome VIII Conference January:9–12Google Scholar
  52. Swanson T (1996) Global values of biological diversity: the public interest in the conservation of plant genetic resources for agriculture. Plant Genet Resour Newsl 105:1–3Google Scholar
  53. Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.). Genome Res 11:1441–1452. doi:10.1101/gr.184001 PubMedCrossRefGoogle Scholar
  54. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST database for the development and characterization of gen-derived SSR-markers in barley(Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  55. Varghese YA (1992) Germ plasm resources and genetic improvements. In: Sethuraj MR, Mathew NM (eds) Developments in crop science 23, natural rubber biology, cultivation and technology. Elsevier, Cambridge, pp 89–115Google Scholar
  56. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55. doi:10.1016/j.tibtech.2004.11.005 PubMedCrossRefGoogle Scholar
  57. Venkatachalam P, Thomas S, Priya P, Thanseem I, Gireesh T, Saraswathyamma CK et al (2002) Identification of DNA polymorphism within the clones of Hevea brasiliensis (Muell.) Arg. using RAPD analysis. Indian J Nat Rubb Res 15:172–181Google Scholar
  58. Venkatachalam P, Priya P, Gireesh T, Saraswathy Amma CK, Thulaseedharan A (2006) Molecular cloning and sequencing of a polymorphic band from rubber tree [Hevea brasiliensis (Muell.) Arg.]: the nucleotide sequence revealed partial homology with proline-specific permease gene sequence. Curr Sci 90(11):1510–1515Google Scholar
  59. Wetmur JG (1991) DNA Probes: Applications of the Principles of Nucleic Acid Hybridization. Crit Rev Biochem Mol Biol 26:227–259. doi:10.3109/10409239109114069 PubMedCrossRefGoogle Scholar
  60. Xie H, Sui Y, Chang F-Q, Xu Y, Ma R-C (2006) SSR allelic variation in almond (Prunus dulcis Mill.). Theor Appl Genet 112:366–372. doi:10.1007/s00122-005-0138-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. P. Feng
    • 1
    • 2
  • W. G. Li
    • 3
  • H. S. Huang
    • 3
  • J. Y. Wang
    • 1
    • 2
  • Y. T. Wu
    • 2
  1. 1.Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural ScienceHaikouThe People’s Republic of China
  2. 2.Key Laboratory of Tropical Horticulture Plant Resources & Genetic Improvement, Ministry of Education, Agricultural CollegeHainan UniversityHaikouThe People’s Republic of China
  3. 3.Rubber Cultivation Research InstituteChinese Academy of Tropic Agricultural ScienceDanzhou CityThe People’s Republic of China

Personalised recommendations