Molecular Breeding

, Volume 22, Issue 4, pp 649–661 | Cite as

A reliable multiplexed microsatellite set for genotyping Fragaria and its use in a survey of 60 F. × ananassa cultivars

  • C. L. Govan
  • D. W. Simpson
  • A. W. Johnson
  • K. R. Tobutt
  • D. J. Sargent
Article

Abstract

We have identified a reliable set of multiplexed microsatellite (SSR) markers for the genotyping of strawberry cultivars and their octoploid progenitors. Over 100 SSRs were screened in two F. × ananassa genotypes and from these, 32 that showed promise for genotyping were selected for further analysis. These SSRs were used to screen a set of 16 strawberry cultivars and a set of fingerprints were produced. Those SSRs that produced reliable, reproducible and easy to interpret fingerprints, that could also distinguish readily between the 16 strawberry cultivars screened, and which could be conveniently included in three multiplex reactions, were selected to form the genotyping set. The genotyping set, consisting of 10 previously-reported SSRs was used to fingerprint a total of 56 cultivated strawberry, and four octoploid Fragaria species accessions. The SSRs used could reliably distinguish between all 60 genotypes surveyed, including sibling cultivars derived from the same parental lines. The primers could be combined for multiplex PCR and represent a useful and convenient genotyping set for Fragaria that will permit fingerprinting data to be shared between laboratories.

Keywords

Fingerprinting Cultivated strawberry Propagation Commercial cultivar 

Notes

Acknowledgement

This research was funded by a grant from the BBSRC Crop Science Initiative grant BB/E007074/1.

References

  1. Aranzana J, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriana G et al (2003) A set of simple sequence repeat markers covering the Prunus genome. Theor Appl Genet 106:819–825PubMedGoogle Scholar
  2. Arnau G, Lallemand J, Bourgoin M (2003) Fast and reliable strawberry cultivar identification using inter simple sequence repeat (ISSR) amplification. Euphytica 129:69–79. doi:10.1023/A:1021509206584 CrossRefGoogle Scholar
  3. Ashley MV, Wilk JA, Styan SMN, Craft KJ, Jones KL, Feldheim KA et al (2003) High variability and disomic segregation of microsatellites in octoploid Fragaria virginiana Mill. (Rosaceae). Theor Appl Genet 107:1201–1207. doi:10.1007/s00122-003-1370-5 PubMedCrossRefGoogle Scholar
  4. Bassil NV, Gunn M, Folta K, Lewers K (2006) Microsatellite markers for Fragaria from ‘Strawberry Festival’ expressed sequence tags. Mol Ecol Notes 6:473–476. doi:10.1111/j.1471-8286.2006.01278.x CrossRefGoogle Scholar
  5. Cipriani G, Pinosa F, Bonoli M, Faedi W (2006) A new set of microsatellite markers for Fragaria species and their application in linkage analysis. J Hortic Sci Biotechnol 81:668–675Google Scholar
  6. Congiu L, Chicca M, Cella R, Rossi R, Bernacchia G (2000) The use of random amplified polymorphic DNA (RAPD) markers to identify strawberry varieties: a forensic application. Mol Ecol 9:229–232. doi:10.1046/j.1365-294x.2000.00811.x PubMedCrossRefGoogle Scholar
  7. Davis TM, DiMeglio LM, Yang R, Styan SMN, Lewers KS (2006) Assessment of SSR transfer from the cultivated strawberry to diploid strawberry species: functionality, linkage group assignment, and use n diversity analysis. J Am Soc Hortic Sci 131:506–512Google Scholar
  8. Degani C, Rowland LJ, Levi A, Hortynski JA, Galletta GJ (1998) DNA fingerprinting of strawberry (Fragaria × ananassa) cultivars using randomly amplified polymorphic DNA (RAPD) markers. Euphytica 102:247–253. doi:10.1023/A:1018385715007 CrossRefGoogle Scholar
  9. Faedi W, Mourgues F, Rosati C (1999) Strawberry breeding and varieties: situation and perspectives. Acta Hortic 567:51–60Google Scholar
  10. Gidoni D, Rom M, Kunik T, Zur M, Izsak E, Izhar S et al (1994) Strawberry-cultivar identification using randomly amplied polymorphic DNA (RAPD) markers. Plant Breed 113:339–342. doi:10.1111/j.1439-0523.1994.tb00747.x CrossRefGoogle Scholar
  11. Gil-Ariza DJ, Amaya I, Botella MA, Muñoz Blanco J, Caballero JL, López-Aranda JM et al (2006) EST-derived polymorphic microsatellites from cultivated strawberry (Fragaria × ananassa) are useful for diversity studies and varietal identification among Fragaria species. Mol Ecol Notes 6:1195–1197. doi:10.1111/j.1471-8286.2006.01489.x CrossRefGoogle Scholar
  12. Graham J, McNichol RJ, McNichol JW (1996) A comparison of methods for the estimation of genetic diversity in strawberry cultivars. Theor Appl Genet 93:402–406. doi:10.1007/BF00223182 CrossRefGoogle Scholar
  13. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H et al (1997) Microsatellites in Malus × domestica (apple): Abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254. doi:10.1007/s001220050407 CrossRefGoogle Scholar
  14. Korbin M, Kuras A, Zurawicz E (2002) Fruit plant germplasm characterisation using molecular markers generated in RAPD and ISSR-PCR. Cell Mol Biol Lett 7:785–794PubMedGoogle Scholar
  15. Kuras A, Korbin M, Zurawicz E (2004) Comparison of suitability of RAPD and ISSR techniques for determination of strawberry (Fragaria × ananassa Duch.) relationship. Plant Cell Tissue Org 79:189–193. doi:10.1007/s11240-004-0659-7 CrossRefGoogle Scholar
  16. Lewers KS, Styan SMN, Hokanson SC, Bassil NV (2005) Strawberry GenBank-derived and genomic simple sequence repeat (SSR) markers and their utility with strawberry, blackberry, and red and black raspberry. J Am Soc Hortic Sci 130:102–115Google Scholar
  17. Marchese A, Tobutt KR, Caruso T (2005) Molecular characterisation of Sicilian Prunus persica cultivars using microsatellites. J Hortic Sci Biotechnol 80:121–129Google Scholar
  18. Milella L, Saluzzi D, Lapelosa M, Bertino G, Spada P, Greco I et al (2006) Relationships between an Italian strawberry ecotype and its ancestor using RAPD markers. Genet Resour Crop Evol 53:1715–1720. doi:10.1007/s10722-005-1405-7 CrossRefGoogle Scholar
  19. Monfort A, Vilanova S, Davis TM, Arús P (2006) A new set of polymorphic simple sequence repeat (SSR) markers from a wild strawberry (Fragaria vesca) are transferable to other diploid Fragaria species and to Fragaria × ananassa. Mol Ecol Notes 6:197–200. doi:10.1111/j.1471-8286.2005.01191.x CrossRefGoogle Scholar
  20. Nier S, Simpson DW, Tobutt KR, Sargent DJ (2006) Construction of a genetic linkage map of an interspecific diploid Fragaria BC1 mapping population (F. vesca 815 × [F. vesca 815 × F. viridis 903]) and its comparison to the Fragaria reference map (FV × FN). J Hortic Sci Biotechnol 81:645–650Google Scholar
  21. Sargent DJ, Hadonou AM, Simpson DW (2003) Development and characterisation of polymorphic microsatellite markers from Fragaria viridis, a wild diploid strawberry. Mol Ecol Notes 3:550–552. doi:10.1046/j.1471-8286.2003.00507.x CrossRefGoogle Scholar
  22. Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arús P, Monfort A et al (2006) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112:1349–1359. doi:10.1007/s00122-006-0237-y PubMedCrossRefGoogle Scholar
  23. Sargent DJ, Cipriani G, Vilanova S, Gil-Ariza D, Arús P, Simpson DW et al (2008) The development of a bin mapping population and the selective mapping of 103 markers in the diploid Fragaria reference mapping population FV × FN. Genome 51:120–127. doi:10.1139/G07-107 PubMedCrossRefGoogle Scholar
  24. Shimomura K, Hirashima K (2006) Development and characterization of simple sequence repeats (SSR) as markers to identify strawberry cultivars (Fragaria × ananassa Duch.). J Jpn Soc Hortic Sci 75:399–402. doi:10.2503/jjshs.75.399 CrossRefGoogle Scholar
  25. Staudt G (1999) Systematics and geographical distribution of the American strawberry species: taxonomic studies in the genus Fragaria (Rosaceae: Potentilleae). University of California Publications in Botany, USAGoogle Scholar
  26. Swofford DL (2003) PAUP* phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  27. Tyrka M, Dziadczyk P, Hortynski JA (2002) Simplified AFLP procedure as a tool for identification of strawberry cultivars and advanced breeding lines. Euphytica 125:273–280. doi:10.1023/A:1015892313900 CrossRefGoogle Scholar
  28. Vaughan SP, Russell K (2004) Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol Ecol Notes 4:429–431. doi:10.1111/j.1471-8286.2004.00673.x CrossRefGoogle Scholar
  29. Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16. doi:10.1046/j.1471-8286.2002.00128.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. L. Govan
    • 1
  • D. W. Simpson
    • 1
  • A. W. Johnson
    • 1
  • K. R. Tobutt
    • 1
  • D. J. Sargent
    • 1
  1. 1.East Malling ResearchEast MallingUK

Personalised recommendations