Molecular Breeding

, Volume 22, Issue 4, pp 629–648 | Cite as

An integrated DArT-SSR linkage map of durum wheat

  • Paola Mantovani
  • Marco Maccaferri
  • Maria Corinna Sanguineti
  • Roberto Tuberosa
  • Ilaria Catizone
  • Peter Wenzl
  • Brent Thomson
  • Jason Carling
  • Eric Huttner
  • Enzo DeAmbrogio
  • Andrzej Kilian
Article

Abstract

Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.

Keywords

DArT Durum wheat Linkage map SSR 

Abbreviations

DArT

Diversity arrays technology

chr

Chromosome

cv

Cultivar

‘C × L’

Colosseo × Lloyd

ITMI map

Ta-Synthetic/Opata-BARC map (Song et al. 2005)

‘K × S’

Kofa × Svevo

PCR

Polymerase chain reaction

RIL

Recombinant inbred line

SSR

Simple sequence repeat or microsatellite marker

Notes

Acknowledgments

Major financial support for this project was provided by Australian Grains R&D Corporation (GRDC), Regione Emilia Romagna (Italy), progetto PRITT, Misura 3.4-A CEREALAB and the European Union BIOEXPLOIT Integrated Project, contract no. 513959. We would like to acknowledge technical help from a number of colleagues from Diversity Arrays Technology Pty Ltd/Triticarte Pty Ltd (Grzegorz Uszynski, Jason Carling, Vanessa Caig, Ling Xia, Damian Jaccoud, Kasia Heller-Uszynska, Gosia Aschenbrenner-Kilian) and from DiSTA, University of Bologna (Sandra Stefanelli).

References

  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S et al (2006) Diversity arrays technology (DArT) for high-throughput profing of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420. doi:10.1007/s00122-006-0365-4 PubMedCrossRefGoogle Scholar
  2. Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G et al (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275. doi:10.1007/s00122-007-0517-1 PubMedCrossRefGoogle Scholar
  3. Bassam BJ, Anollés GC, Gresshoff P (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83. doi:10.1016/0003-2697(91)90120-I PubMedCrossRefGoogle Scholar
  4. Blanco A, Bellomo MP, Cenci A, De Giovanni C, D’Ovidio R, Iacono E et al (1998) A genetic linkage map of durum wheat. Theor Appl Genet 97:721–728. doi:10.1007/s001220050948 CrossRefGoogle Scholar
  5. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177. doi:10.1534/genetics.105.044586 PubMedCrossRefGoogle Scholar
  6. Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. Em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–377. doi:10.1007/s001220050425 CrossRefGoogle Scholar
  7. Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913. doi:10.1534/genetics.107.078659 PubMedCrossRefGoogle Scholar
  8. Esch E, Szymaniak JM, Yates H, Pawlowski WP, Bucler ES (2007) Using crossover breakpoints in recombinant inbred lines to identify quantitative trait loci controlling the global recombination frequency. Genetics published ahead of print doi:10.1534/genetics.107.080622
  9. Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407PubMedCrossRefGoogle Scholar
  10. Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835PubMedGoogle Scholar
  11. Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, Gonzalez de Leon D (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526. doi:10.1007/BF00215098 CrossRefGoogle Scholar
  12. Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262–269. doi:10.1007/BF00220887 CrossRefGoogle Scholar
  13. Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification of high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012PubMedGoogle Scholar
  14. Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891PubMedGoogle Scholar
  15. Giunta F, Motzo R, Pruneddu G (2007) Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars. Eur J Agron 27:12–24. doi:10.1016/j.eja.2007.01.009 CrossRefGoogle Scholar
  16. Goyal A, Bandopadhyay R, Sourdille P, Endo TR, Balyan HS, Gupta PK (2005) Physical molecular maps of wheat chromosomes. Funct Integr Genomics 5:260–263. doi:10.1007/s10142-005-0146-1 PubMedCrossRefGoogle Scholar
  17. Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422PubMedCrossRefGoogle Scholar
  18. Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744PubMedCrossRefGoogle Scholar
  19. Hayden MJ, Nguyen TM, Waterman A, McMichael GL, Chalmers KJ (2008) Application of multiplex-ready PCR for fluorescence-based SSR genotyping in barley and wheat. Mol Breed. doi:10.1007/s11032-007-9127-5
  20. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25. doi:10.1093/nar/29.4.e25 PubMedCrossRefGoogle Scholar
  21. Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V et al (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress in the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, Italy, 27–31 May 2003, pp 443–461Google Scholar
  22. Koebner RM, Summers RW (2003) 21st century wheat breeding: plot selection or plate detection? Trends Biotechnol 21:59–63. doi:10.1016/S0167-7799(02)00036-7 PubMedCrossRefGoogle Scholar
  23. Korzun V, Röder MS, Wendekake K, Pasqualone A, Lotti C, Ganal MW et al (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202–1207. doi:10.1007/s001220051185 CrossRefGoogle Scholar
  24. Langridge P (2005) Molecular breeding of wheat and barley. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress in the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, Italy, 27–31 May 2003, pp 279–286Google Scholar
  25. Langridge P, Chalmers K (1998) Techniques for marker development. In: Proceedings of the 9th international wheat genet symposium, vol 1. Saskatchewan, Canada, pp 107–117Google Scholar
  26. Lincoln SE, Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics 14:604–610. doi:10.1016/S0888-7543(05)80158-2 PubMedCrossRefGoogle Scholar
  27. Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B, Chao S et al (2004) A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 168:665–676. doi:10.1534/genetics.104.034835 PubMedCrossRefGoogle Scholar
  28. Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628. doi:10.1007/s00122-002-0970-9 PubMedCrossRefGoogle Scholar
  29. Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797. doi:10.1007/s00122-003-1319-8 PubMedCrossRefGoogle Scholar
  30. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–290. doi:10.1007/s11032-004-7012-z CrossRefGoogle Scholar
  31. Maccaferri M, Sanguineti MC, Natoli V, Ortega JAL, Salem MB, Bort J et al (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genet Resour 4:79–85CrossRefGoogle Scholar
  32. Maccaferri M, Stefanelli S, Rotondo F, Tuberosa R, Sanguineti MC (2007) Relationships among durum wheat accessions. I. Comparative analysis of SSR, AFLP, and phenotypic data. Genome 50:373–384. doi:10.1139/G06-151 PubMedCrossRefGoogle Scholar
  33. Maccaferri M, Sanguineti MC, Corneti S, Jose LAO, Ben Salern M, Bort J et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511. doi:10.1534/genetics.107.077297 PubMedCrossRefGoogle Scholar
  34. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  35. Mantovani P, van der Linden G, Maccaferri M, Sanguineti MC, Tuberosa R (2006) Nucleotide-binding site (NBS) profiling of genetic diversity in durum wheat. Genome 49:1473–1480. doi:10.1139/G06-100 PubMedCrossRefGoogle Scholar
  36. Nachit MM, Elouafi I, Pagnotta MA, El Saleh A, Iacono E, Labhilili M et al (2001) Molecular linkage map for an intraspecific recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186. doi:10.1007/s001220051633 CrossRefGoogle Scholar
  37. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242PubMedCrossRefGoogle Scholar
  38. Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC et al (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531. doi:10.1101/gr.150300 PubMedCrossRefGoogle Scholar
  39. Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield, Science Publishers, Montpellier, pp 43–76Google Scholar
  40. Perrier X, Jacquemoud-Collet JP (2006) DARwin software (http://darwin cirad fr/darwin)
  41. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 92:1078–1084Google Scholar
  42. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  43. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA sepacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8019. doi:10.1073/pnas.81.24.8014 PubMedCrossRefGoogle Scholar
  44. Sandhu D, Champoux JA, Bondareva SN, Gill KS (2001) Identification and physical localization of useful genes and markers to major gee-rich region on wheat group 1S chromosomes. Genetics 157:1735–1747PubMedGoogle Scholar
  45. Sanguineti MC, Li S, Maccaferri M, Corneti S, Rotondo F, Chiari T et al (2007) Genetic dissection of seminal root architecture in elite durum wheat germplasm. Ann Appl Biol 151:291–305. doi:10.1111/j.1744-7348.2007.00198.x CrossRefGoogle Scholar
  46. Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555. doi:10.1139/G06-002 PubMedCrossRefGoogle Scholar
  47. Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor Appl Genet 115:301–312PubMedCrossRefGoogle Scholar
  48. Somers DJ, Kirkpatrick R, Moniwa M, Walsh A (2003) Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431–437. doi:10.1139/g03-027 PubMedCrossRefGoogle Scholar
  49. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7 PubMedCrossRefGoogle Scholar
  50. Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293PubMedCrossRefGoogle Scholar
  51. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J et al (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560. doi:10.1007/s00122-004-1871-x PubMedCrossRefGoogle Scholar
  52. Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538PubMedGoogle Scholar
  53. Sourdille P, Singh S, Cadalen T, Brown-Guedira G, Gay G, Qi L et al (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25. doi:10.1007/s10142-004-0106-1 PubMedCrossRefGoogle Scholar
  54. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  55. Tivang JG, Nienhuis J, Smith OS (1994) Estimation of sampling variance of molecular marker data using the bootstrap procedure. Theor Appl Genet 89:259–264. doi:10.1007/BF00225151 CrossRefGoogle Scholar
  56. Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051. doi:10.1007/s00122-006-0206-5 PubMedCrossRefGoogle Scholar
  57. van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, NetherlandsGoogle Scholar
  58. van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40. doi:10.1007/s00122-005-0097-x PubMedCrossRefGoogle Scholar
  59. van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, Rouppe van der Voort JNAM, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RGF, Bakker J, van Eck HJ (2006) Construction of a 10, 000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 173:1075–1087. doi:10.1534/genetics.106.055871 PubMedCrossRefGoogle Scholar
  60. Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: an overview. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol 1: genomics approaches and platforms. Springer, Dordrecht, The Netherlands, pp 1–12CrossRefGoogle Scholar
  61. Weir BS, Anderson AD, Hepler AB (2006) Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet 7:771–780. doi:10.1038/nrg1960 PubMedCrossRefGoogle Scholar
  62. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A et al (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920. doi:10.1073/pnas.0401076101 PubMedCrossRefGoogle Scholar
  63. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP, and STS loci and agricultural traits. BMC Genomics 7:206. doi:10.1186/1471-2164-7-206 PubMedCrossRefGoogle Scholar
  64. Williams RW, Gu J, Qi S, Lu L (2001) The genetic structure of recombinant inbred mice: high-resolution consensus maps for complex trait analysis. Genome Biol 2:research0046.1-0046.18Google Scholar
  65. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545. doi:10.1007/s004380050355 PubMedCrossRefGoogle Scholar
  66. Yu JK, Dake TM, Singh S, Benscher D, Li W, Gill B et al (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818. doi:10.1139/g04-057 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Paola Mantovani
    • 1
  • Marco Maccaferri
    • 1
  • Maria Corinna Sanguineti
    • 1
  • Roberto Tuberosa
    • 1
  • Ilaria Catizone
    • 1
    • 2
  • Peter Wenzl
    • 2
  • Brent Thomson
    • 2
  • Jason Carling
    • 2
  • Eric Huttner
    • 2
  • Enzo DeAmbrogio
    • 3
  • Andrzej Kilian
    • 2
  1. 1.Department of Agroenvironmental Sciences and TechnologyUniversity of BolognaBolognaItaly
  2. 2.Diversity Arrays Technology P/L and Triticarte Pty LtdCanberraAustralia
  3. 3.Società Produttori Sementi Bologna, Research DivisionArgelatoItaly

Personalised recommendations