Molecular Breeding

, Volume 22, Issue 3, pp 367–384 | Cite as

Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population

  • Kimberley B. RitterEmail author
  • David R. Jordan
  • Scott C. Chapman
  • Ian D. Godwin
  • Emma S. Mace
  • C. Lynne McIntyre


QTL for stem sugar-related and other agronomic traits were identified in a converted sweet (R9188) × grain (R9403463-2-1) sorghum population. QTL analyses were conducted using phenotypic data for 11 traits measured in two field experiments and a genetic map comprising 228 SSR and AFLP markers grouped into 16 linkage groups, of which 11 could be assigned to the 10 sorghum chromosomes (SBI-01 to SBI-10). QTL were identified for all traits and were generally co-located to five locations (SBI-01, SBI-03, SBI-05, SBI-06 and SBI-10). QTL alleles from R9188 were detected for increased sucrose content and sugar content on SBI-01, SBI-05 and SBI-06. R9188 also contributed QTL alleles for increased Brix on SBI-05 and SBI-06, and increased sugar content on SBI-03. QTL alleles from R9403463-2-1 were found for increased sucrose content and sucrose yield on SBI-10, and increased glucose content on SBI-07. QTL alleles for increased height, later flowering and greater total dry matter yield were located on SBI-01 of R9403463-2-1, and SBI-06 of R9188. QTL alleles for increased grain yield from both R9403463-2-1 and R9188 were found on SBI-03. As an increase in stem sugars is an important objective in sweet sorghum breeding, the QTL identified in this study could be further investigated for use in marker-assisted selection of sweet sorghum.


Sweet sorghum Sugar AFLP SSR QTL 



We gratefully acknowledge the financial support of the Sugar Research and Development Corporation (SRDC) to the first author. The authors thank Donna Glassop (CSIRO) for her assistance with the HPLC, Colleen Hunt (DPIF) for her statistical analyses and Kirsten Halloran (DPIF) for her technical assistance.


  1. Aitken K, Jackson P, McIntyre C (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo) logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801PubMedCrossRefGoogle Scholar
  2. Aitken K, Jackson P, McIntyre C (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar x Saccharum officinarum population. Theor Appl Genet 112:1306–1317PubMedCrossRefGoogle Scholar
  3. Albertson P, Grof C (2007) Application of high performance anion exchange-pulsed amperometric detection to measure the activity of key sucrose metabolising enzymes in sugarcane. J Chromatogr B 845:151–156CrossRefGoogle Scholar
  4. Al-Janabi S, Honeycutt R, Sobral B (1994a) Chromosome assortment in Saccharum. Theor Appl Genet 89:959–963CrossRefGoogle Scholar
  5. Al-Janabi S, McClelland M, Petersen C, Sobral B (1994b) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor Appl Genet 88:933–944CrossRefGoogle Scholar
  6. Bhattramakki D, Dong J, Chhabra A, Hart G (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002PubMedCrossRefGoogle Scholar
  7. Butler D, Cullis B, Gilmour A, Gogel B (2003) SAMM, reference manual. In: Technical report. Queensland Department of Primary IndustriesGoogle Scholar
  8. Crasta O, Xu W, Rosenow D, Mullet J, Nguyen H (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association of QTLs influencing premature senescence and maturity. Mol Genet Genomics 262:579–588CrossRefGoogle Scholar
  9. Cuiyan Z (1998) Review and perspective on sweet sorghum breeding in China. Int Sorghum Millets Newsl 39:70–71Google Scholar
  10. Cullis B, Gleeson A (1991) Spatial analysis of field experiments—an extension to two dimensions. Biometrics 47:1449–1460CrossRefGoogle Scholar
  11. Dufour P, Grivet L, D’Hont A, Deu M, Trouche G, Glaszmann J, Hamon P (1996) Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane. Theor Appl Genet 92:1024–1030CrossRefGoogle Scholar
  12. Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann J, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418CrossRefGoogle Scholar
  13. Feltus F, Hart G, Schertz F, Casa A, Brown P, Klein P, Kresovich S, Paterson A (2006) Genetic map alignment and QTL correspondence between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305PubMedCrossRefGoogle Scholar
  14. Ferraris R, Charles-Edwards D (1986) A comparative analysis of the growth of sweet and forage sorghum crops II accumulation of soluble carbohydrates and nitrogen. Aust J Agric Res 37:513–533CrossRefGoogle Scholar
  15. Grivet L, D’Hont A, Dufour P, Hamon P, Roques D, Glaszmann J (1994) Comparative genome mapping of sugarcane with other species within the Andropogoneae tribe. Heredity 73:500–508CrossRefGoogle Scholar
  16. Guimaraes C, Sills G, Sobral B (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266PubMedCrossRefGoogle Scholar
  17. Hart G, Schertz K, Peng Y, Syed N (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242CrossRefGoogle Scholar
  18. Hoisington D (1992) Laboratory protocols: CIMMYT applied molecular genetics laboratory. CIMMYT, MexicoGoogle Scholar
  19. Hunter E, Anderson I (1997) Sweet sorghum. In: Janick J (ed) Horticultural reviews. Wiley, New York, pp 73–104Google Scholar
  20. Kim J-S, Klein P, Klein R, Price H, Mullet J, Stelly D (2004) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173PubMedCrossRefGoogle Scholar
  21. Klein R, Rodriguez-Herrera R, Schlueter J, Klein P, Yu Z, Rooney W (2001) Identification of genomic regions that affect grain mold incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319CrossRefGoogle Scholar
  22. Kong L, Dong L, Hart G (2000) Characteristics, linkage-map positions and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448CrossRefGoogle Scholar
  23. Lin Y-R, Schertz K, Paterson A (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411PubMedGoogle Scholar
  24. McBee G, Waskom R, Miller F, Creelman R (1983) Effect of senescence and nonsenescence on carbohydrates in sorghum during late kernel maturity states. Crop Sci 23:370–375Google Scholar
  25. Menz M, Klein R, Mullet J, Obert J, Unruh N, Klein P (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499PubMedCrossRefGoogle Scholar
  26. Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003) Constructing large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282PubMedGoogle Scholar
  27. Ming R, Liu S, Lin Y, da Silva J, Wilson W, Braga D, van Deynz A, Wenslaff T, Wu K, Moore P, Burnquist W, Sorrells M, Irvine J, Paterson A (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organisation of closely related diploid and polyploid genomes. Genetics 150:1663–1682PubMedGoogle Scholar
  28. Ming R, Liu S, Bowers J, Moore P, Irvine J, Paterson A (2002a) Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583Google Scholar
  29. Ming R, Wang Y, Draye X, Moore P, Irvine J, Paterson A (2002b) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345PubMedCrossRefGoogle Scholar
  30. Multipoint, Accessed 16/05/07, MultiQTL—the best QTL mapping software,
  31. Natoli A, Gorni C, Chegdani F, Ajmone Marson P, Colombi C, Lorenzoni C, Marocco A (2002) Identification of QTLs associated with sweet sorghum quality. Maydica 47:311–322Google Scholar
  32. Pereira M, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388CrossRefGoogle Scholar
  33. Rami J-F, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616CrossRefGoogle Scholar
  34. Reddy B, Ramesh S, Reddy S, Ramaiah B, Salimath P, Kachapur R (2005) Sweet sorghum—a potential alternate raw material for bio-ethanol and bio-energy. Int Sorghum Millets Newsl 46:79–86Google Scholar
  35. Reddy B, Reddy P (2003) Sweet sorghum: characteristics and potential. Int Sorghum Millets Newsl 44:26–28Google Scholar
  36. Reffay N, Jackson P, Aitken K, Hoarau J-Y, D’Hont A, Besse P, McIntyre C (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15:367–381CrossRefGoogle Scholar
  37. Tao Y, Manners J, Ludlow M, Henzell R (1993) DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 86:679–688CrossRefGoogle Scholar
  38. Tao Y, Jordan D, Henzell R, McIntyre C (1998) Construction of a genetic map in a sorghum RIL population using probes from different sources and its comparison with other sorghum maps. Aust J Agric Res 49:729–736CrossRefGoogle Scholar
  39. Van Os H, Stam P, Visser R, Van Eck H (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40PubMedCrossRefGoogle Scholar
  40. Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  41. Vos P, Hogers R, Bleeker M, Reijans M, Van Der Lee T, Hornes M (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  42. Wang S, Basten C, Gaffney P, Zeng Z-B (2004) WinQTL Cartographer. Bioinformatics Research Center, North Carolina State University)Google Scholar
  43. Yang J, Hu C, Ye X, Zhu J (2005) QTLNetwork-2.0. Institute of Bioinformatics, Zhejiang University, Hangzhou, China.
  44. Yun-long B, Seiji Y, Maiko I, Hong-wei C (2006) QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China 5:736–744CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kimberley B. Ritter
    • 1
    • 2
    • 3
    Email author
  • David R. Jordan
    • 4
  • Scott C. Chapman
    • 1
  • Ian D. Godwin
    • 2
  • Emma S. Mace
    • 4
  • C. Lynne McIntyre
    • 1
  1. 1.Queensland Bioscience PrecinctCSIRO Plant IndustrySt LuciaAustralia
  2. 2.The School of Land and Food SciencesUniversity of QueenslandSt LuciaAustralia
  3. 3.Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUSA
  4. 4.Department of Primary Industries and FisheriesHermitage Research StationWarwickAustralia

Personalised recommendations