Molecular Breeding

, Volume 22, Issue 1, pp 1–13 | Cite as

Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley

  • R. K. Varshney
  • T. Thiel
  • T. Sretenovic-Rajicic
  • M. Baum
  • J. Valkoun
  • P. Guo
  • S. Grando
  • S. Ceccarelli
  • A. Graner
Article

Abstract

A ‘core set’ of 28 simple sequence repeat (SSR) and 28 single nucleotide polymorphism (SNP) markers for barley was developed after screening six diverse genotypes (DGs) representing six countries (Afghanistan, Pakistan, Algeria, Egypt, Jordan and Syria) with 50 SSR and 50 SNP markers derived from expressed sequence tags (ESTs). The markers of the core set are single locus with very high quality amplifications, high polymorphism information content (PIC) and are distributed across the barley genome. PIC values for the selected SSR and SNP markers ranged between 0.32–0.72 (average 0.58) and 0.28–0.50 (average 0.42), respectively. To make the SNP genotyping cost effective, CAPS (cleaved amplified polymorphic sequence) and indel assays were developed for 23 markers and the remaining 5 SNP markers were optimized for pyrosequencing. A high coefficient of correlations (r = 0.96, P < 0.005) between the genetic similarity matrices of SSR and SNP genotyping data of the core set on diverse genotypes (DGs) and their similar groupings according to the geographical distribution in both SSR and SNP phenograms with high bootstrap values underline the utility and reliability of the core set. A comparative allelic and sequence diversity for SSR and SNP markers between the DGs and six elite parental genotypes (PGs) of mapping populations showed comparable diverse nature of two germplasm sets. However, unique SNPs and indels were observed in both germplasm sets providing more datapoints for analysing haplotypes in a better way for the corresponding SNP marker.

Keywords

Allele specific sequencing CAPS Genetic diversity Nucleotide diversity Polymorphism Information Content (PIC) Pyrosequencing 

Notes

Acknowledgements

We are thankful to U. Beier for her excellent technical assistance and to Nils Stein for useful discussions. This work was financially supported by a GTZ project (no. 2002.7860.6-001.00 and Contract no. 1060503) sponsored by BMZ (Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung), Germany.

Supplementary material

References

  1. Bundock PC, Henry RJ (2004) Single nucleotide polymorphism, haplotype diversity and recombination in the Isa gene of barley. Theor Appl Genet 109:543–551PubMedCrossRefGoogle Scholar
  2. Bundock PC, Christopher JT, Eggler P, Ablett G, Henry RJ, Holton TA (2003) Single nucleotide polymorphisms in cytochrome P450 genes from barley. Theor Appl Genet 106:676–682PubMedGoogle Scholar
  3. Chiapparino E, Lee D, Donini P (2004) Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS-PCR. Genome 47:414–420PubMedGoogle Scholar
  4. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski AJ (2002) SNP frequency, halpotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19PubMedCrossRefGoogle Scholar
  5. Coryell VH, Jessen H, Schupp JM, Webb D, Keim P 1999 Allele-specific hybridization markers for soybean. Theor Appl Genet 98:690–696CrossRefGoogle Scholar
  6. Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424CrossRefGoogle Scholar
  7. Fernandez ME, Figueiras AM, Benito C (2002) The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet 104:845–851PubMedCrossRefGoogle Scholar
  8. Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119:39–43CrossRefGoogle Scholar
  9. Graner A, Jahoor A, Schondelmaier H, Siedler K, Pillen K, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256CrossRefGoogle Scholar
  10. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  11. Kanazin V, Talbert H, See D, DeCamp P, Nevo E, Blake T (2002) Discovery and assay of single nucleotide polymorphsims in barley (Hordeum vulgare). Plant Mol Biol 48:529–537PubMedCrossRefGoogle Scholar
  12. Kleinhofs A, Kilian A, Saghai Maroof M, Biyashev R, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular isozyme and morphological map of barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712CrossRefGoogle Scholar
  13. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A (2001a) Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum vulgare L.). Hereditas 135:145–151PubMedCrossRefGoogle Scholar
  14. Kota R, Wolf M, Michalek W, Graner A (2001b) Application of DHPLC for mapping of single nucleotide polymorphisms (SNPs) in barley (Hordeum vulgare L.). Genome 44:523–528PubMedCrossRefGoogle Scholar
  15. Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genom 270:224–233Google Scholar
  16. Kota R, Varshney RK, Prasad M, Zhang H, Stein N, Graner A (2007) EST-derived single nucleotide polymorphism (SNP) markers for assembling genetic and physical maps of the barley genome. Funct Integr Genom. doi:10.1007/s10142-007-0060-9 Google Scholar
  17. Leigh F, Lea V, Law J, Wolters P, Powell W, Donini O (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366CrossRefGoogle Scholar
  18. Lörz H, Wenzel G (2004) Molecular marker systems in plant breeding and crop improvement. Springer Verlag, Germany, pp 476Google Scholar
  19. Macaulay M, Ramsay L, Powell W, Waugh R (2001) A representative, highly informative ‘genotyping set’ of barley SSRs. Theor Appl Genet 102:801–809CrossRefGoogle Scholar
  20. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  21. Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106PubMedCrossRefGoogle Scholar
  22. Miyashita NT, Kawabe A, Innan H (1999) DNA variation in the wild plant Arabidopsis thaliana revealed by amplified fragment length polymorphism analysis. Genetics 152:1723–1731PubMedGoogle Scholar
  23. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155PubMedCrossRefGoogle Scholar
  24. Nyrén P (2006) The history of pyrosequencing. Methods Mol Biol 373:1–14Google Scholar
  25. Pettersson M, Bylund M, Alderborn A (2003) Molecular haplotype determination using allele-specific PCR and pyrosequencing. Genomics 82:390–396PubMedCrossRefGoogle Scholar
  26. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  27. Purugganan MD, Suddith JI (1999) Molecular population genetics of floral homeotic loci: departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics 151:839–848PubMedGoogle Scholar
  28. Rafalski A (2002) Application of single nucleotide polymorphsims in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  29. Rohlf FJ (1998) NTSYS-pc numerical taxonomy and multivariate analysis system. Version 2.02. Exeter Publications Setauket, New YorkGoogle Scholar
  30. Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722CrossRefGoogle Scholar
  31. Russell J, Booth A, Fuller J, Harrower B, Hedley P, Machray G, Powell W (2004) A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley. Genome 47:389–398PubMedCrossRefGoogle Scholar
  32. Schneider K, Weisshaar B, Borchardt DC, Salamini F (2001) SNP frequency and allelic haplotype structure of Beta vulgaris expressed genes. Mol Breed 8:63–74CrossRefGoogle Scholar
  33. Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1000 loci transcript map of the barley genome- new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839PubMedCrossRefGoogle Scholar
  34. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA. Nucleic Acids Res 17:6463PubMedCrossRefGoogle Scholar
  35. Tenaillon MI, Sawkins MC, Long AD, Gaut B, Doebley JF, Brandon S (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L.). Proc Natl Acad Sci (USA) 98:9161–9166CrossRefGoogle Scholar
  36. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  37. Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and InDel analysis tool for CAPS marker development. Nucleic Acids Res 32(1):e5Google Scholar
  38. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  39. Varshney RK, Prasad M, Graner A (2004) Molecular marker maps of barley: a resource for intra- and interspecific genomics. In: Lörz H, Wenzel G (eds) Molecular markers in improvement of agriculture and forestry. Springer Verlag, Germany, pp 229–243Google Scholar
  40. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  41. Varshney RK, Grosse I, Hahnel U, Thiel T, Rudd S, Zhang H, Prasad M, Stein N, Langridge P, Graner A (2006) Genetic mapping and physical mapping (BAC-identification) of EST-derived microsatellite markers in barley (Hordeum vulgare L.). Theor Appl Genet 113:239–250PubMedCrossRefGoogle Scholar
  42. Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Börner A (2007a) Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet 114:1105–1116PubMedCrossRefGoogle Scholar
  43. Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007b) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649CrossRefGoogle Scholar
  44. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kupier M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  45. Wang RL, Stec A, Hey J, Lukens L, Doebley J (1999) The limits of selection in maize. Nature 398:236–239PubMedCrossRefGoogle Scholar
  46. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  47. Wolfe RI, Franckowiak JD (1991) Multiple dominant and recessive genetic marker stocks in spring barley. Barley Genet Newsl 20:117–121Google Scholar
  48. Woodhead M, Russell J, Squirrell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Athyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14:1681–1695PubMedCrossRefGoogle Scholar
  49. Zhu YL, Song QJ, Hyten DL, van Tassell C, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB (2003) Single-nucleotide polymorphisms in soybean. Genetics 163:1123–1134PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • R. K. Varshney
    • 1
    • 2
  • T. Thiel
    • 1
  • T. Sretenovic-Rajicic
    • 1
  • M. Baum
    • 3
  • J. Valkoun
    • 3
  • P. Guo
    • 3
  • S. Grando
    • 3
  • S. Ceccarelli
    • 3
  • A. Graner
    • 1
  1. 1.Leibniz Institute of Plant Genetics & Crop Plant Research (IPK)GaterslebenGermany
  2. 2.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Greater HyderabadIndia
  3. 3.International Centre for Agricultural Research in Dry Areas (ICARDA)AleppoSyria

Personalised recommendations