Molecular Breeding

, Volume 21, Issue 4, pp 533–548 | Cite as

Expressed sequence tag-derived microsatellite markers of perennial ryegrass (Lolium perenne L.)

  • Bruno Studer
  • Torben Asp
  • Ursula Frei
  • Stephan Hentrup
  • Helena Meally
  • Aurélie Guillard
  • Susanne Barth
  • Hilde Muylle
  • Isabel Roldán-Ruiz
  • Philippe Barre
  • Carole Koning-Boucoiran
  • Gerda Uenk-Stunnenberg
  • Oene Dolstra
  • Leif Skøt
  • Kirsten P. Skøt
  • Lesley B. Turner
  • Mervyn O. Humphreys
  • Roland Kölliker
  • Niels Roulund
  • Klaus K. Nielsen
  • Thomas Lübberstedt
Short Communication

Abstract

An expressed sequence tag (EST) library of the key grassland species perennial ryegrass (Lolium perenne L.) has been exploited as a resource for microsatellite marker development. Out of 955 simple sequence repeat (SSR) containing ESTs, 744 were used for primer design. Primer amplification was tested in eight genotypes of L. perenne and L. multiflorum representing (grand-) parents of four mapping populations and resulted in 464 successfully amplified EST-SSRs. Three hundred and six primer pairs successfully amplified products in the mapping population VrnA derived from two of the eight genotypes included in the original screening and revealed SSR polymorphisms for 143 ESTs. Here, we report on 464 EST-derived SSR primer sequences of perennial ryegrass established in laboratory assays, providing a dedicated tool for marker assisted breeding and comparative mapping within and among forage and turf grasses.

Keywords

Comparative mapping Expressed sequence tag (EST) Ryegrass (Lolium spp.) Simple sequence repeat (SSR) 

Supplementary material

11032_2007_9148_MOESM1_ESM.xls (267 kb)
(DOC 267 kb)

References

  1. Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  2. Asp T, Frei UK, Didion T, Nielsen KK, Lübberstedt T (2007) Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biol 7:36PubMedCrossRefGoogle Scholar
  3. Barre P, Mi F, Balfourier F, Ghesquière M (2000) QTLs for morphogenetic traits and sensitivity to rusts in Lolium perenne. In: Spangenberg GC (ed) Proceedings of the second international symposium on molecular breeding of forage crops. Lorne and Hamilton, VIC, Australia, 60 ppGoogle Scholar
  4. Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452CrossRefGoogle Scholar
  5. Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32PubMedCrossRefGoogle Scholar
  6. Gill GP, Wilcox PL, Whittaker DJ, Winz RA, Bickerstaff P, Echt CE, Kent J, Humphreys MO, Elborough KM, Gardner RC (2006) A framework linkage map of perennial ryegrass based on SSR markers. Genome 49:354–364PubMedCrossRefGoogle Scholar
  7. Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:270–279PubMedCrossRefGoogle Scholar
  8. Jensen LB, Andersen JR, Frei U, Xing Y, Taylor C, Holm PB, Lübberstedt T (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536PubMedCrossRefGoogle Scholar
  9. Jensen LB, Holm PB, Lübberstedt T (2007) Cross-species amplification of 105 Lolium perenne SSR loci in 23 species within the Poaceae. Mol Ecol Notes 7:1155–1161CrossRefGoogle Scholar
  10. Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001) Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102:405–415CrossRefGoogle Scholar
  11. Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Sci 41:1565–1572CrossRefGoogle Scholar
  12. Lauvergeat V, Barre P, Bonnet M, Ghesquière M (2005) Sixty simple sequence repeat markers for use in the Festuca-Lolium complex of grasses. Mol Ecol Notes 5:401–405CrossRefGoogle Scholar
  13. Roldán-Ruiz I, Van Eeuwijk FA, Gilliland TJ, Dubreuil P, Dillmann C, Lallemand J, De Loose M, Baril CP (2001) A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass (Lolium perenne L.) varieties. Theor Appl Genet 103:1138–1150CrossRefGoogle Scholar
  14. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  15. Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791PubMedCrossRefGoogle Scholar
  16. Saha MC, Cooper JD, Mian MAR, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458PubMedCrossRefGoogle Scholar
  17. Squirrell J, Hollingsworth PM, Woodhead M, Russell J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348PubMedCrossRefGoogle Scholar
  18. Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R (2006) Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:661–671PubMedCrossRefGoogle Scholar
  19. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  20. Varshney RK, Graner A, Sorrells E (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  21. Yamada T, Forster JW, Humphreys MW, Takamizo T (2005) Genetics and molecular breeding in Lolium/Festuca grass species complex. Grassl Sci 51:89–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Bruno Studer
    • 1
  • Torben Asp
    • 1
  • Ursula Frei
    • 1
  • Stephan Hentrup
    • 1
  • Helena Meally
    • 2
  • Aurélie Guillard
    • 2
  • Susanne Barth
    • 2
  • Hilde Muylle
    • 3
  • Isabel Roldán-Ruiz
    • 3
  • Philippe Barre
    • 4
  • Carole Koning-Boucoiran
    • 5
  • Gerda Uenk-Stunnenberg
    • 5
  • Oene Dolstra
    • 5
  • Leif Skøt
    • 6
  • Kirsten P. Skøt
    • 6
  • Lesley B. Turner
    • 6
  • Mervyn O. Humphreys
    • 6
  • Roland Kölliker
    • 7
  • Niels Roulund
    • 8
  • Klaus K. Nielsen
    • 8
  • Thomas Lübberstedt
    • 1
  1. 1.Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Research Centre FlakkebjergUniversity of AarhusSlagelseDenmark
  2. 2.Crops Research Centre Oak ParkTEAGASCCarlowIreland
  3. 3.Plant Unit, Applied Genetics and BreedingInstitute for Agricultural and Fisheries Research (ILVO)MelleBelgium
  4. 4.Unité de Génétique et d’Amélioration des Plantes FourragèresInstitut National de Recherche Agronomique (INRA)LusignanFrance
  5. 5.Plant Research International B.V. (PRI)WageningenThe Netherlands
  6. 6.Plant Genetics and Breeding DepartmentInstitute of Grassland and Environmental Research (IGER)AberystwythUK
  7. 7.Agroscope Reckenholz-Tänikon Research Station (ART)ZurichSwitzerland
  8. 8.DLF-TRIFOLIUM, Dansk PlanteforædlingStore HeddingeDenmark

Personalised recommendations