Molecular Breeding

, Volume 20, Issue 4, pp 375–388 | Cite as

A consensus map for Cucurbita pepo

  • Amine Zraidi
  • Gertraud Stift
  • Martin Pachner
  • Abdolali Shojaeiyan
  • Li Gong
  • Tamas Lelley
Article

Abstract

Using random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), and morphological traits, the first genetic maps for Cucurbita pepo (2n=2x=40) were constructed and compared. The two mapping populations consisted of 92 F2 individuals each. One map was developed from a cross between an oil-seed pumpkin breeding line and a zucchini accession, into which genes for resistance to Zucchini Yellow Mosaic Virus (ZYMV) from a related species, C. moschata, had been introgressed. The other map was developed from a cross between an oil-seed pumpkin and a crookneck variety. A total of 332 and 323 markers were mapped in the two populations. Markers were distributed in each map over 21 linkage groups and covered an average of 2,200 cM of the C. pepo genome. The two maps had 62 loci in common, which enabled identification of 14 homologous linkage groups. Polyacrylamide gel analyses allowed detection of a high number of markers suitable for mapping, 10% of which were co-dominant RAPD loci. In the Pumpkin-Zucchini population, bulked segregant analysis (BSA) identified seven markers less than 7 cM distant from the locus n, affecting lignification of the seed coat. One of these markers, linked to the recessive hull-less allele (AW11-420), was also found in the Pumpkin-Crookneck population, 4 cM from n. In the Pumpkin-Zucchini population, 24 RAPD markers, previously introduced into C. pepo from C. moschata, were mapped in two linkage groups (13 and 11 markers in LGpz1 and LGpz2, respectively), together with two sequence characterized amplified region (SCAR) markers linked to genes for resistance to ZYMV.

Keywords

DNA markers Cucurbita moschata BSA Seed coat ZYMV SCAR-marker 

Notes

Acknowledgments

This research was financially supported by the Austrian Science Fund (FWF Project, No. P15773) and by the State of Lower Austria. Our thanks to J. E. Staub, USDA–ARS and University of Wisconsin, Madison, for testing the Cucumis-SSRs on the four parents used in our crosses. We are grateful to J. E. Staub and H. S. Paris for critically reading the manuscript.

References

  1. Andres TC (1987) Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit Genet Coop Rep 10:69–71Google Scholar
  2. Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64CrossRefGoogle Scholar
  3. Beckmann JS, Soller M (1990) Towards a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite site. Biotechnology 8:30–32Google Scholar
  4. Bennett MD, Leitch IJ (2004) Plant DNA C-values database (release 3.0, Dec. 2004) http://www.rbgkew.org.uk/cval/homepage.htmlGoogle Scholar
  5. Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999) A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99:445–452CrossRefGoogle Scholar
  6. Blumenthal M, Busse WR, Goldberg A, Gruenwald J, Hall T, Riggins CW, Rister RS (eds), Klein S, Rister RS (trans) (1998) The complete German commission E monographs. S. 193. American Botanical Council; Boston; Integrative Medicine Communications, AustinGoogle Scholar
  7. Boivin K, Deu M, Rami J-F, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328CrossRefGoogle Scholar
  8. Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J (2001) Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L). Genome 44:111–119PubMedCrossRefGoogle Scholar
  9. Brown RN, Myers JR (2002) A genetic map of squash (Cucurbita ssp.) with randomly amplified polymorphic DNA markers and morphological markers. J Am Soc Hortic Sci 127:568–575Google Scholar
  10. Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91PubMedCrossRefGoogle Scholar
  11. Cai H, Inoue M, Yuyama N, Nakayama S (2004) An AFLP-based linkage map of Zoysiagrass (Zoysia japonica). Plant Breed 123:543–548CrossRefGoogle Scholar
  12. Costa P, Pot D, Dubos C, Frigerio J-M, Pionneau C, Bodénès C, Bertocchi E, Cervera M-T, Remington DL, Plomion C (2000) A genetic map of maritime pine based on AFLP, RAPD and Protein markers. Theor Appl Genet 100:39–48CrossRefGoogle Scholar
  13. Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384CrossRefGoogle Scholar
  14. Decker DS (1988) Origin(s), evolution, and systematics in Cucurbita pepo (Cucurbitaceae). Econ Bot 42:4–15Google Scholar
  15. De la Rosa R, Angiolillo A, Guerriero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  16. Duchesne AN (1786) Essai sur l’histoire naturelle des courges. Pankoucke CJ, Paris, p 46Google Scholar
  17. Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ (1994) Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37:61–71PubMedGoogle Scholar
  18. Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber (Cucumis sativus L.) J Am Soc Hortic Sci 127:545–557Google Scholar
  19. Ferriol M, Picó B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  20. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110: 802–811PubMedCrossRefGoogle Scholar
  21. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  22. Grebenščikov I (1954) Zur Vererbung der Dünnschaligkeit bei Cucurbita pepo L. Züchter 24:162–166CrossRefGoogle Scholar
  23. Haanstra JP, Wye W, Verbakel H, Meijer-Dekens F, Van den Berg P, Odinot P, Van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L. pennellii F2 populations. Theor Appl Genet 99:254–271CrossRefGoogle Scholar
  24. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38PubMedCrossRefGoogle Scholar
  25. Haley SD, Afanador L, Kelly JD (1994) Selection for monogenic pest resistance traits with coupling- and repulsion-phase RAPD markers. Crop Sci 34:1061–1066CrossRefGoogle Scholar
  26. Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999) Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat. Genome 42:322–329CrossRefGoogle Scholar
  27. Haussmann BIG, Hess DE, Seetharama N, Welz HG, Geiger HH (2002) Construction of a combined sorghum linkage map from two recombinant inbred populations using AFLP, SSR, RFLP, and RAPD markers, and comparison with other sorghum maps. Theor Appl Genet 105:629–637PubMedCrossRefGoogle Scholar
  28. Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome 34:437–447Google Scholar
  29. Katzir N, Danin-Poleg Y, Tzuri G, Karchi Z, Lavi U, Cregan PB (1996) Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93:1282–1290CrossRefGoogle Scholar
  30. Katzir N, Tadmor Y, Tzuri G, Leshzeshen E, Mozes-Daube N, Danin-Poleg Y, Paris HS (2000) Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. In: Katzir N, Paris HS (eds) Proceedings of the cucurbitaceae 2000. Acta Hortic 510:433–439Google Scholar
  31. Keim P, Diers BW, Olson TC, Shoemaker RC (1990) RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126:735–742PubMedGoogle Scholar
  32. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  33. Kreuter MH (2000) Hormone disbalance and urinary bladder disease. Phyto Novum, Emil Flachsmann AG, Zürich Switzerland, pp 2–24Google Scholar
  34. Krutovskii KV, Vollmer SS, Sorensen FC, Adams WT, Knapp SJ, Strauss SH (1998) RAPD genome maps of Douglas-fir. J Hered 89:197–205CrossRefGoogle Scholar
  35. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  36. Laucou V, Haurogné K, Ellis N, Rameau C (1998) Genetic mapping in pea. 1. RAPD linkage map of Pisum sativum. Theor Appl Genet 97:905–915CrossRefGoogle Scholar
  37. Lee YH, Jeon HJ, Hong KH, Kim BD (1995) Use of random amplified polymorphic DNA for linkage group analysis in an interspecific cross hybrid F2 generation of Cucurbita. J Kor Soc Hortic Sci 36:323–330Google Scholar
  38. Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP 3.0. Whitehead Inst Tech Rpt 3rd EditionGoogle Scholar
  39. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance gene by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  40. Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationship in cultivated potato. Mol Breed 3:127–136CrossRefGoogle Scholar
  41. Murkovic M, Hillebrand A, Winkler J, Leitner E, Pfannhauser W (1996) Variability of fatty acid content in pumkin seeds (Cucurbita pepo L.) Z. Lebensm Unters Forsch 203:216–219CrossRefGoogle Scholar
  42. Murkovic M, Piironen V, Lampi AM, Kraushofer T, Sontag G (2004) Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (Part 1: non-volatile compounds). Food Chem 84:359–365CrossRefGoogle Scholar
  43. Naudin C (1856) Nouvelles recherches sur les caractères spécifiques et les variétés des plantes du genre Cucurbita. Ann Sci Nat Bot IV 6:5–73, pl. 1–3Google Scholar
  44. Oliver M, Garcia-Mas J, Cardús M, Pueyo N, López-Sesé AI, Arroyo M, Gómez-Paniagua H, Arús P, de Vicente MC (2001) Construction of a reference linkage map of melon. Genome 44:836–845PubMedCrossRefGoogle Scholar
  45. Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138Google Scholar
  46. Paris HS (2000) Segregation distortion in Cucurbita pepo. In: Katzir N, Paris HS (eds) Proceedings of the cucurbitaceae 2000. Acta Hortic 510:199–202Google Scholar
  47. Paris HS, Cohen S (2000) Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann Appl Biol 136:209–214CrossRefGoogle Scholar
  48. Paris HS (2001) History of the cultivar-groups of Cucurbita pepo. Hortic Rev 25:71–170Google Scholar
  49. Paris HS, Yonash N, Portnoy V, Mozes-Daube N, Tzuri G, Katzir N (2003) Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor Appl Genet 106:971–978PubMedGoogle Scholar
  50. Paris HS, Brown RN (2005) The genes of pumpkin and squash. HortScience 40:1620–1630Google Scholar
  51. Park YH, Sensoy S, Wye C, Antonise R, Peleman J, Havey MJ (2000) A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43:1003–1010PubMedCrossRefGoogle Scholar
  52. Paterson AH, Landers ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  53. Périn C, Hagen L, Dogimont C, de Conto V, Pitrat M (1998) Construction of a genetic map of melon with molecular markers and horticultural traits. In: McCreight JD (ed) Cucurbitaceae 98: evaluation and enhancement of cucurbit germplasm. ASHS Press, Alexandria, VA, pp 370–376Google Scholar
  54. Périn C, Hagen L, Dogimont C, de Conto V, Lecomte L, Pitrat M (2000) Construction of a reference genetic map of melon. In: Katzir N, Paris HS (eds) Proceedings of the cucurbitaceae 2000. Acta Hortic 510:367–374Google Scholar
  55. Plomion C, O’Malley DM, Durel CE (1995) Genomic analysis in maritime pine (Pinus pinaster). Comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor Appl Genet 90:1028–1034CrossRefGoogle Scholar
  56. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellites) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  57. Prym von Becherer L (1955) Untersuchungen zur Anatomie und zum Erbverhalten der Samenschalen von Cucurbita maxima DUCH. und Cucurbita pepo L. Züchter 25:1–14Google Scholar
  58. Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384CrossRefGoogle Scholar
  59. Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, New YorkGoogle Scholar
  60. Schmidlin CB, Kreuter MH (2003) Cucurbita pepo, mögliche Einfluss auf hormonelle Ungleichgewicht bei Inkontinenz. Phytotherapie 3:2–4Google Scholar
  61. Serquen FC, Bacher J, Staub JE (1997) Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed 3:257–268CrossRefGoogle Scholar
  62. Sanjur OI, Piperno DR, Andres ThC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540PubMedCrossRefGoogle Scholar
  63. Stift G, Pachner M, Lelley T (2003) Comparison of RAPD fragment separation in agarose and polyacrylamide gel by studying Cucurbita species. Cucurbit Genet Coop Rep 26:62–65Google Scholar
  64. Teppner H (2000) Cucurbita pepo (Cucurbitaceae)—history, seed coat types, thin coated seeds and their genetics. Phyton 40:1–42Google Scholar
  65. Torres-Ruiz R, Hemleben V (1991) Use of ribosomal DNA spacer probes to distinguish cultivars of Cucurbita pepo L. and other Cucurbitaceae. Euphytica 53:11–17CrossRefGoogle Scholar
  66. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  67. Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935CrossRefGoogle Scholar
  68. Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798CrossRefGoogle Scholar
  69. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Survey of plant short tandem DNA repeates. Theor Appl Genet 88:1–6Google Scholar
  70. Wilson HD, Payne JS (1994) Crop/weed microgametophyte competition in Cucurbita pepo (Cucurbitaceae). Am J Bot 81:1531–1537CrossRefGoogle Scholar
  71. Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99:785–790CrossRefGoogle Scholar
  72. Zhong D, Pai A, Yan G (2004) AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum). J Hered 95:53–61PubMedCrossRefGoogle Scholar
  73. Zraidi A, Obermayer R, Pachner M, Lelley T (2003) On the genetics and histology of the hull-less character of Styrian Oil-Pumpkin (Cucurbita pepo L.). Cucurbit Genet Coop Rep 26:57–61Google Scholar
  74. Zraidi A, Lelley T (2004) Genetic map for pumpkin Cucurbita pepo using random amplified polymorphic DNA markers. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research. Proceedings of the cucurbitaceae 2004, 8th EUCARPIA meeting on cucurbit genetics and breeding, Olomouc, pp 507–514Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Amine Zraidi
    • 1
  • Gertraud Stift
    • 1
  • Martin Pachner
    • 1
  • Abdolali Shojaeiyan
    • 1
    • 2
  • Li Gong
    • 1
  • Tamas Lelley
    • 1
  1. 1.Institute of Biotechnology in Plant Production, Department for AgrobiotechnologyUniversity of Natural Resources and Applied Life SciencesTullnAustria
  2. 2.Department of Horticulture, Faculty of AgricultureIlam UniversityIlamIran Islamic Republic

Personalised recommendations