Advertisement

Molecular Breeding

, Volume 20, Issue 1, pp 31–40 | Cite as

Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat

  • Dominique Barloy
  • Jocelyne Lemoine
  • Paulette Abelard
  • A. M. Tanguy
  • Roger Rivoal
  • Joseph Jahier
Original Paper

Abstract

The cereal cyst nematode (CCN) Heterodera avenae, is a significant pathogen of wheat. The wild grass Aegilops variabilis Accession No.1 has been found to be resistant to pathotypes of CCN; at least two genes transferred to wheat, designated as CreX and CreY, are involved in the resistance response. The CreY gene may be the same as Rkn-mn1, which confers resistance to root knot nematode (RKN) Meloidogyne naasi. The objective of this work was to pyramid the two CCN resistance genes in a wheat background through marker-assisted selection. As a first step, molecular markers flanking CreX were identified. The completely linked RAPD marker of Rkn-mn1 (CreY), OpY16-1065, previously obtained, was converted into a SCAR. All these dominant markers were used to incorporate in the same genotype the two Ae. variabilis chromosome segments carrying the two genes for resistance. CCN bioassays with the Ha12 pathotype showed that the level of resistance of the pyramided line was significantly higher than that of CreX and CreY single introgression lines, but lower than that of Ae. variabilis. This study thus illustrates the utilization of molecular markers in breeding for host resistance.

Keywords

Cre genes Heterodera avenae Molecular markers Pyramiding Triticum aestivum 

Notes

Acknowledgements

The authors would like to thank E. Jenczewski for his critical reading of the manuscript, and M. Trottet for advice on statistical analyses. We are grateful to Victoria Hawken for correcting English.

References

  1. Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK (2004) DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST-SSRs. Plant Sci 166:349–356CrossRefGoogle Scholar
  2. Barloy D, Lemoine J, Dedryver F, Jahier J (2000) Molecular markers linked to the Aegilops variabilis-derived root-knot nematode resistance Rkn-mn1 in wheat. Plant breed 118:169–172CrossRefGoogle Scholar
  3. Bekal S, Jahier J, Rivoal R (1998) Host responses of different Triticeae to species of the cereal cyst nematodes complex in relation to breeding resistant durum wheat. Fundam Appl Nematol 21:359–370Google Scholar
  4. Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allan RC (1991) Analysis of the VNTR locus D1S80 by PCR followed by high-resolution PAGE. Am J Genet 48:137–141Google Scholar
  5. de Majnik J, Ogbonnaya FC, Moullet O, Lagudah E (2003) The Cre1 and Cre3 nematode resistance genes are located at homeologous loci in the wheat genome. Mol Plant-Microbe Interact 16:1129–1134PubMedGoogle Scholar
  6. Delibes A, Romero D, Aguaded S, Duce A, Mena M, Lopez-Brana I, Andrés MF, Martin-Sanchez JA, Garcia-Olmedo F (1993) Resistance to the cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a “stepping stone” procedure. Theor Appl Genet 87:402–408CrossRefGoogle Scholar
  7. Dosba F, Doussinault G, Rivoal R (1978) Extraction, identification and utilization of the addition lines Triticum aestivum-Aegilops ventricosa. In: Ramamujan S (ed) Proceedings of the 5th international wheat genetics symposium, india society of genetics and plant breed. IARI, New Dehli, India, pp 332–337Google Scholar
  8. Doyle JJ, Doyle JL (1990) Isolation of DNA from fresh tissue. Focus 12:13–15Google Scholar
  9. Dundas IS, Frappell DE, Crack DM, Fisher JM (2001) Deletion mapping of a nematode resistance gene on rye chromosome 6R in wheat. Crop Sci 41:1771–1778CrossRefGoogle Scholar
  10. Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to the cereal cyst nematode (Heterodera avenae). Aust. J Agric Res 42:69–77Google Scholar
  11. Eastwood RF, Lagudah ES, Appels R (1994) A directed search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome 37:311–319PubMedGoogle Scholar
  12. Evans K, Rowe JA (1998) Distribution and economic importance. In: Sharma SD (eds) The cyst nematodes. Chapman &Hall, London, UK, pp 1–30Google Scholar
  13. Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korsun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422PubMedCrossRefGoogle Scholar
  14. Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic microsatellite from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172PubMedCrossRefGoogle Scholar
  15. Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three majors genes for blast resistance in rice. Theor Appl Genet 100:1121–1128CrossRefGoogle Scholar
  16. Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Kush GS (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320CrossRefGoogle Scholar
  17. Jahier J, Tanguy AM, Abélard P, Rivoal R (1996) Utilization of deletions to localize a gene for resistance to the cereal cyst nematode, Heterodera avenae, on an Aegilops ventricosa chromosome. Plant Breed 115:282–284CrossRefGoogle Scholar
  18. Jahier J, Rivoal R, Yu MQ, Abélard P, Tanguy AM, Barloy D (1998) Transfer of genes for resistance to cereal cyst nematode from Aegilops variabilis Eig to wheat. J Genet Breed 52:253–257Google Scholar
  19. Jahier J, Abélard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar VPM1 carries the cereal cyst nematode gene Cre5. Plant Breed 120:125–128CrossRefGoogle Scholar
  20. Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes Lr13, Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol 46:737–750CrossRefGoogle Scholar
  21. Liu J, Liu D, Tao W, Li W, Wang S, Chen P, Cheng S, Gao D (2000) Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed 119:21–24CrossRefGoogle Scholar
  22. Mc Intosh RA, Devos KM, Dubcovsky J, Morris CF, Rogers WJ (2003) Catalogue of gene symbols for wheat: 2003 supplement. http://wheat.pw.usda.gov/ggpages/wgc/2003upd.htlmGoogle Scholar
  23. McIntosh RA (1998) Breeding wheat for resistance to biotic stresses. Euphytica 100:19–34CrossRefGoogle Scholar
  24. Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF, Lagudah ES (2001) Molecular-genetic characterisation of nematode resistance from Aegilops ventricosa and its derivatives in wheat. Theor Appl Genet 102:623–629CrossRefGoogle Scholar
  25. Ordon F, Friedt W, Scheurer K, Pellio B, Werner K, Neuhaus G, Huth W, Habekuss A, Graner A (2004) Molecular markers in breeding for virus resistance in barley. J Appl Genet 45:145–159PubMedGoogle Scholar
  26. Paull JG, Chalmers KJ, Karakousis A, Kretschmer JM, Manning S, Langridge P (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96:435–466CrossRefGoogle Scholar
  27. Person-Dedryver F, Jahier J (1985) Les céréales à paille, hôtes de Meloidogyne naasi Franklin. III—Recherches de source de résistance parmi les espèces voisines du blé tendre. Agronomie 5:572–578Google Scholar
  28. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697PubMedCrossRefGoogle Scholar
  29. Rivoal R, Person F, Caubel G, Scotto la Massèse C (1978) Méthode d’évaluation de la résistance des céréales au développement des nématodes: Ditylenchus dipsaci, Heterodera avenae et Pratylenchus spp. Ann Amél Pl 28:371–394Google Scholar
  30. Rivoal R, Dosba F, Jahier J, Pierre JS (1986) Les lignées d’addition blé-Aegilops ventricosa Tausch VI. Etude de la localisation chromosomique de la résistance à l’égard d’Heterodera avenae Woll. Agronomie 6:143–148Google Scholar
  31. Rivoal R, Cook R (1993a) Nematode pests of cereals. In: Evans K, Trudgill DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. Wallingford, UK, CAB international, pp 259–303Google Scholar
  32. Rivoal R, Jahier J, Hulle M (1993b) Partial resistance to Heterodera avenae in wheat lines with the 6Mv chromosome from Aegilops ventricosa. J Nematology 25:265–269Google Scholar
  33. Rivoal R, Bekal S, Valette S, Gauthier JP, Bel Hadj Fradj M, Mokabli A, Jahier J, Nicol J, Yahyaoui A (2001) Variation in reproductive capacity and virulence on different genotypes and resistance genes of Triticeae, in the cereal cyst nematode species complex. Nematology 3:581–592CrossRefGoogle Scholar
  34. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of the wheat genome. Genetics 149:2007–2023PubMedGoogle Scholar
  35. Romero MD, Montes MJ, Sin E, Lopez-Brana I, Duce A, Martin-Sanchez JA, Andres MF, Delibes A (1998) A cereal cyst nematode (Heterodera avenae Woll) resistance gene transferred from Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 96:1135–1140CrossRefGoogle Scholar
  36. Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000) Sequence tagged site marker-assisted selection of three bacterial blight resistance genes in rice. Crop Sci 40:792–797CrossRefGoogle Scholar
  37. SAS Institute (1996) SAS/STAT user’s guide. Version 6.12. SAS Institute, Cary, N.CGoogle Scholar
  38. Seah S, Spielmeyer W, Jahier J, Sivasithamparam K, Lagudah ES (2000) Resistance gene analogs within an introgressed chromosomal segment derived from Triticum ventricosa that confers resistance to nematode and rust pathogens in wheat. Mol Plant–Microbe Interact 13:334–341PubMedGoogle Scholar
  39. Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523PubMedCrossRefGoogle Scholar
  40. Sharma PN, Torii A, Takumi S, Mori N, Nakamura C (2004) Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stal) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas 140:61–69PubMedCrossRefGoogle Scholar
  41. Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (Xa5, Xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015CrossRefGoogle Scholar
  42. Slootmaker LAJ, Lange G, Jochemsen G, Schepers J (1974) Monosomic analysis in bread wheat of resistance to cereal root eelworm. Euphytica 23:497–503CrossRefGoogle Scholar
  43. Somers DJ, Isaac P, Keith E (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  44. Werner K, Friedt W, Ordon F (2000) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex based on molecular and DH lines. In: Proceedings of the 8th International Barley Genetics Symposium, vol 2. Adelaide, Australia, pp 200–202Google Scholar
  45. Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55CrossRefGoogle Scholar
  46. Williams KJ, Fisher JM, Langridge P (1996) Development of a PCR-based allele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat. Genome 39:798–801PubMedGoogle Scholar
  47. Williams KJ, Willsmore KL, Olson S, Matic M, Kuchel H (2006) Mapping of a novel QTL for resistance to cereal cyst nematode in wheat. Theor Appl Genet 112:1480–1486PubMedCrossRefGoogle Scholar
  48. Yu MQ, Jahier J, Person-Dedryver F (1992) Genetics of two mechanisms of resistance to Meloidogyne naasi (Franklin) in an Aegilops variabilis Eig accession. Euphytica 58:267–273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Dominique Barloy
    • 1
  • Jocelyne Lemoine
    • 1
  • Paulette Abelard
    • 1
  • A. M. Tanguy
    • 1
  • Roger Rivoal
    • 2
  • Joseph Jahier
    • 1
  1. 1.UMR INRA-Agrocampus Rennes, Amélioration des Plantes et Biotechnologies Végétales, Domaine de la MotteLe Rheu CedexFrance
  2. 2.UMR INRA-Agrocampus Rennes, Biologie des Organismes et des Populations appliqué à la protection des Plantes (BiO3P) Domaine de la MotteLe Rheu CedexFrance

Personalised recommendations