Molecular Breeding

, Volume 19, Issue 4, pp 341–356

Association mapping of yield and its components in rice cultivars

Original Paper

Abstract

To make advances in rice breeding it is important to understand the relatedness and ancestry of introduced rice accessions, and identify SSR markers associated with agronomically important phenotypic traits, for example yield. Ninety-two rice germplasm accessions recently introduced from seven geographic regions of Africa, Asia, and Latin America, and eleven US cultivars, included as checks, were evaluated for yield and kernel characteristics, and genotyped with 123 SSR markers. The SSR markers were highly polymorphic across all accessions. Population structure analysis identified eight main clusters for the accessions which corresponded to the major geographic regions, indicating agreement between genetic and predefined populations. Linkage disequilibrium (LD) patterns and distributions are of fundamental importance for genome-wide mapping association. LD between linked markers decreased with distance and with a substantial drop in LD decay values between 20 and 30 cM, suggesting it should be possible to achieve resolution down to the 25 cM level. For the 103 cultivars, the complex traits yield, kernel width, kernel length, kernel width/length ratio, and 1000-kernel weight, were estimated by analysis of variety trial data. The mixed linear model method was used to disclose marker-trait associations. Many of the associated markers were located in regions where QTL had previously been identified. In conclusion, association mapping in rice is a viable alternative to QTL mapping based on crosses between different lines.

Keywords

Linkage disequilibrium Unified mixed-model method Population structure Kinship coefficient Relatedness 

Abbreviations

SSR

Simple sequence repeat

QTL

Quantitative trait loci

cM

CentiMorgan

References

  1. Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139PubMedGoogle Scholar
  2. Abdallah JM, Goffinet B, Ayrolles CC, Pérez-Enciso M (2003) Linkage disequilibrium fine mapping of quantitative trait loci: a simulation study. Genet Sel Evol 35:513–532PubMedCrossRefGoogle Scholar
  3. Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309PubMedCrossRefGoogle Scholar
  4. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedCrossRefGoogle Scholar
  5. Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nature Rev Genet 2:91–98CrossRefPubMedGoogle Scholar
  6. Chen X, Cho YG, McCouch SR (2002) Sequence divergence of rice microsatellites in Oryza and other plant species. Mol Genet Genomics 268:331–343PubMedCrossRefGoogle Scholar
  7. Ching A, Caldwell KS, Jung M, Dolan M, Smith OS, Tingey S, Morgante M, Rafalski A (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19. pp 1–14Google Scholar
  8. Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722CrossRefGoogle Scholar
  9. Condon F, Smith K (2005) Linkage disequilibrium and marker-trait associations within six-rowed barley breeding germplasm. Plant & Animal Genomes XIII Conference. January 15–19, 2005Google Scholar
  10. Dilday RH, Yan W, Moldenhauer KAK, Gibbons JW, Lee FN, Bryant RJ (2001) Chinese and other foreign germplasm evaluation. In: Norman RJ, Meullenet J-F (eds) B.R. Wells Rice Research Studies 2000. University of Arkansas, Agricultural Experiment Station. Research Series 485:1–12Google Scholar
  11. Eaves IA, Barber RA, Merriman TR (1998) Comparison of linkage disequilibrium in populations from UK and Finland. Am J Hum Gen A221Google Scholar
  12. Eizenga GC, Agrama HA, Lee FN, Yan W, Jia Y (2006) Identifying novel resistance genes in newly introduced Blast resistant rice germplasm. Crop Sci 46:1870–1878CrossRefGoogle Scholar
  13. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  14. Estoup A, Tailliez C, Cornuet JM, Solignac M (1995) Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol 12:1074–1084PubMedGoogle Scholar
  15. Farnir F, Coppieters W, Arranz W, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227PubMedCrossRefGoogle Scholar
  16. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  17. Fjellstrom RG, Conaway-Bormans CA, McClung AM, Marchetti MA, Shank AR, Park WD (2004) Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci 44:1790–1798CrossRefGoogle Scholar
  18. Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell S, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064PubMedCrossRefGoogle Scholar
  19. Foster M, Sharp RR (2002) Race, ethnicity, and genomics: social classifications as proxies of biological heterogeneity. Genome Res 12:844–850PubMedCrossRefGoogle Scholar
  20. Gao LZ, Ge S, Hong DY (2000) Low levels of genetic diversity within populations and high genetic differentiation among populations of a wild rice, Oryza granulate Nees et Arn. Ex Watt. From China. Int J Plant Sci 161:691–697CrossRefGoogle Scholar
  21. Gao LZ, Cheng W, Ge S, Hong DY, Jiang WZ, Wang W (2001) Genetic erosion in northern marginal population of common wild rice Oryza rufipogon Griff. and its conservation, revealed by allozyme analysis. Hereditas 133:47–53CrossRefGoogle Scholar
  22. Gao LZ, Schaal BA, Zhang CH, Jia JZ (2002) Assessment of population genetic structure in common wild rice Oryza rufipogon Griff. Using microsatellite and allozyme markers. Theor Appl Genet 106:173–180PubMedGoogle Scholar
  23. Gao LZ, Zhang CH (2005) Comparisons of microsatellite variability and population genetic of two endangered wild rice species, Oryza rufipogon and O. officinalis, and their conservation implications. Biodivers Conserv 14:1663–1679CrossRefGoogle Scholar
  24. Garris A, McCouch SR, Kresovich S (2003) Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165:759–769PubMedGoogle Scholar
  25. Garris A, Tai T, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638PubMedCrossRefGoogle Scholar
  26. Ge XJ, Xing YZ, Xu CG, He YQ (2005) QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population. Plant Breed 124:121–126CrossRefGoogle Scholar
  27. Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30CrossRefGoogle Scholar
  28. Guo LB, Xing YZ, Mei HW, Xu CG, Shi CH, Wu P, Luo LJ (2005) Dissection of component QTL expression in yield formation in rice. Plant Breed 124:127–132CrossRefGoogle Scholar
  29. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedCrossRefGoogle Scholar
  30. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyze spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  31. Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CrossRefGoogle Scholar
  32. Hittalmani S, Shashidhar HE, Bagali PG, Huang N, Sidhu JS, Singh VP, Khush GS (2002) Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica 125:207–214CrossRefGoogle Scholar
  33. Ishii T, McCouch SR (2000) Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species. Theor Appl Genet 100:1257–1266CrossRefGoogle Scholar
  34. Ishii T, Xu Y, McCouch SR (2001) Nuclear- and chloroplast-microsatellite variation in A-genome species of rice. Genome 44:658–666PubMedCrossRefGoogle Scholar
  35. Jannink JL, Walsh B (2002) Association mapping in plant populations. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CAB InternationalGoogle Scholar
  36. Jing YH, Sun CQ, Tan LB, Fu YC, Zhang PJ, Xu ZJ, Chen WF, Wang XK (2005) Mapping QTLs controlling vascular bundle and panicle-related traits from Yuanjiang common wild rice (Oryza rufipogon Griff.). Acta-Genetica-Sinica 32:178–182PubMedGoogle Scholar
  37. Jorde LR (1995) Linkage disequilibrium as a gene-mapping tool. Am J Hum Genet 56:11–14PubMedGoogle Scholar
  38. Jorde LR (2000) Linkage disequilibrium and the search for complex disease genes. Genome Res 10:1435–1444PubMedCrossRefGoogle Scholar
  39. Kraakman ATW, Niks RE, van den Berg PM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedCrossRefGoogle Scholar
  40. Kraakman ATW, Martínez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58CrossRefGoogle Scholar
  41. Kraft T, Hansen M, Nilsson N-O (2000) Linkage disequilibrium and fingerprinting in sugar beet. Theor Appl Genet 101:323–326CrossRefGoogle Scholar
  42. Kruger SA, Able JA, Chalmers KJ, Langridge P (2004) Linkage disequilibrium analysis of hexaploid wheat. In: Plant & Animal Genomes XII Conference, 10–14 January, Town & Country Convention Center, San Diego, CA, p 321Google Scholar
  43. Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22:139–144PubMedCrossRefGoogle Scholar
  44. Lander ES, Schork NJ (1994) Genetic dissection of quantitative traits. Science 256:2037–2048CrossRefGoogle Scholar
  45. Li J, Xiao J, Grandillo S, Jiang L, Wan Y, Deng Q, Yuan L, McCouch SR (2004) QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47:697–704PubMedCrossRefGoogle Scholar
  46. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL ×  environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153PubMedCrossRefGoogle Scholar
  47. Liu K, Muse S (2004) PowerMarker: new genetic data analysis software. Version 3.0. Free program distributed by the author over the internet from http://www.powermarker.netGoogle Scholar
  48. Lu H, Redus MA, Coburn JR, Rutger JN, McCouch SR, Tai TH (2005) Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis. Crop Sci 45:66–76CrossRefGoogle Scholar
  49. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289CrossRefGoogle Scholar
  50. Mackill DJ (1995) Classifying japonica rice cultivars with RAPD markers. Crop Sci 35:889–894CrossRefGoogle Scholar
  51. Mather DE, Hyes PM, Chalmers KJ, Eglinton J, Matus I, Richardson K, VonZitzewitz J, Marquez-Cedillo L, Hearnden P, Pal N (2004) Use of SSR marker data to study linkage disequilibrium and population structure in Hordeum vulgare: Prospects for association mapping in barley. In: International barley genetics symposium, Brno, Czech Republic, 20–26 June 2004. pp 302–307Google Scholar
  52. McCouch SR, Chen X, Panaud O, Temnykh S, Xu Y, Cho YG, Huang N, Ishii T, Blair MW (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol 35:89–99PubMedCrossRefGoogle Scholar
  53. McCouch SRM, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Carinhour S, Ware D, Stein L (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  54. McRae AF, McEwan JC, Dodds KG, Wilson T, Crawford AM, Slate J (2002) Linkage disequilibrium in domestic sheep. Genetics 160:1113–1122PubMedGoogle Scholar
  55. N’Goran JAK, Laurent V, Risterucci AM, Lanaud C (2000) The genetic structure of cocoa populations (Theobroma cacao L.) revealed by RFLP analysis. Euphytica 115:83–90CrossRefGoogle Scholar
  56. Ni J, Colowit PM, Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci 42:601–607CrossRefGoogle Scholar
  57. Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193PubMedCrossRefGoogle Scholar
  58. Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomanjian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfeisch T, Schulz V, Kreitman M, Bergelson J (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:1289–1299CrossRefGoogle Scholar
  59. Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan D (2006) Selection under domestication: evidence for a sweep in the rice Waxy genomic region. Genetics 173:975–983PubMedCrossRefGoogle Scholar
  60. Parsons BJ, Newbury HJ, Jackcon MT, Ford-Lloyd BV (1999) The genetic structure and conservation of aus, aman and bro rices from Bangladesh. Genet Res Crop Evol 46:587–598CrossRefGoogle Scholar
  61. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228PubMedCrossRefGoogle Scholar
  62. Pritchard JK, Donnelly P (2001) Case-control studies of association in structured or admixed populations. Theor Popul Biol 60:227–237PubMedCrossRefGoogle Scholar
  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  64. Remington DL, Thornsberry JM, Matsuola Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler IV ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484PubMedCrossRefGoogle Scholar
  65. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedCrossRefGoogle Scholar
  66. Risch NJ (2000) Searching for genetic determination for the new millennium. Nature 405:847–856PubMedCrossRefGoogle Scholar
  67. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385PubMedCrossRefGoogle Scholar
  68. Skøt L, Humphreys MO, Armstead I, Heywood S, Skøt KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol Breed 15:233–245CrossRefGoogle Scholar
  69. Smith MW, O’Brien SJ (2005) Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. Nat Rev (online) doi:10.1038/nrgl1657Google Scholar
  70. Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730PubMedCrossRefGoogle Scholar
  71. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler IV ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  72. Viard F, Franck P, Dubois MP, Estoup A, Jarne P (1998) Variation of microsatellite size homoplasy across electromorphs, loci, and populations in three invertebrate species. J Mol Evol 47:42–51PubMedCrossRefGoogle Scholar
  73. Watkins WS, Rogers AR, Ostler CT, Wooding S, Bamshad MJ, Brassington A-ME, Carroll ML, Nguyen SV, Walker JA, Prasad BVR, Reddy PG, Das PK, Batzer MA, Jorde1 LB (2003) Genetic variation among world populations: inferences from 100 Alu insertion polymorphisms. Genome Res 13:1607–1618PubMedCrossRefGoogle Scholar
  74. Weber J, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  75. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  76. Weir BS (1996) Genetic data analysis II: Methods for discrete population genetic data. Sinauer Assoc., Inc., Sunderland, MA, USAGoogle Scholar
  77. Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler IV ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733PubMedCrossRefGoogle Scholar
  78. Yan WG, Rutger JN, Bryant RJ, Lee FN, Gibbons JW (2003) Characteristics of newly-introduced accessions in the USDA-ARS rice quarantine program In: Norman RJ, Meullenet J-F (eds) B.R. Wells Rice Research Studies 2002. Univ. of Arkansas Agric Exp Stn Res Ser 504:112–124Google Scholar
  79. Yang GP, Saghai Maroof MA, Xu CG, Zhang Q, Biyashev RM (1994) Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice. Mol Gen Genet 245:187–194PubMedCrossRefGoogle Scholar
  80. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:155–160PubMedGoogle Scholar
  81. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley J, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedCrossRefGoogle Scholar
  82. Zhang N, Xu Y, Akash M, McCouch S, Oard JH (2005) Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theor Appl Genet 110:721–729PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.University of Arkansas Rice Research and Extension CenterStuttgartUSA
  2. 2.United States Department of Agriculture – Agricultural Research ServiceDale Bumpers National Rice Research CenterStuttgartUSA

Personalised recommendations