Molecular Breeding

, Volume 19, Issue 1, pp 45–58 | Cite as

Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs

  • J.-M. Lacape
  • D. Dessauw
  • M. Rajab
  • J.-L. Noyer
  • B. Hau
Original Paper


A series of 320 mapped simple sequence repeats (SSRs) have been used to screen the allelic diversity of tetraploid Gossypium species. Fourty-seven genotypes were analyzed representing (i) the wide spectrum of diversity of the cultivated pool and of the primitive landraces of species G. hirsutum (‘marie-galante’, ‘punctatum’, ‘richmondi’, ‘morrilli’, ‘palmeri’, and ‘latifolium’, and ‘yucatanense’), and (ii) species G. barbadense, G. darwinii and G. tomentosum. The polymorphism of 201 SSR loci revealed 1128 allelic variants ranging from 3 to 17 per locus. Neighbor-joining (NJ) method based on genetic dissimilarities produced groupings consistent with the assignments of accessions both at species and at race level. Our data confirmed the proximity of the Galapagos endemic species G. darwinii to species G. barbadense. Within species G. hirsutum, and as compared to the other 6 races, race yucatanense appeared as the most distant from cultivated genotypes. Race yucatanense also exhibited the highest number of unique alleles. The important informative heterogeneity of the 201 SSR loci was exploited to select the most polymorphic ones that were assembled into three series of genome-wide (i.e. each homoeologous AD chromosome pair being equally represented) and mutliplexable (× 3) SSRs. Using one of these ‘genotyping set’, consisting of 39 SSRs (one 3-plex for each of the 13 AD chromosomes pairs) or 45 loci, we were able to assess the relationships between accessions and the topology in the genetic diversity sampled. Such genotyping set of highly informative SSR markers assembled in PCR-multiplex, while increasing genotyping throughput, will be applicable for molecular genetic diversity studies of large germplasm collections.


Cotton Genetic diversity Genotyping set Gossypium sp. Simple sequence repeat 



We thank Dr. Xavier Perrier for many helpful discussions and assistance with the statistical analyses.

Supplementary material


  1. Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102:222–229CrossRefGoogle Scholar
  2. Adams KL, Wendel JF (2004) Exploring the mysteries of polyploidy in cotton. Biol J Linn Soc 82:573–581CrossRefGoogle Scholar
  3. Ahoton L, Lacape J-M, Baudoin J-P, Mergeai G (2003) Introduction of australian diploid cotton genetic variation into upland cotton. Crop Sci 43:1999–2005CrossRefGoogle Scholar
  4. Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186PubMedGoogle Scholar
  5. Ano G, Schwendiman J, Fersing J, Lacape J-M (1982) Les cotonniers primitifs de G. hirsutum race yucatanense de la Pointe des Châteaux en Guadeloupe et l’origine possible des cotonniers tétraploides du Nouveau Monde. Cot Fib Trop 37(4):327–332Google Scholar
  6. Bourdon C (1984) Différenciation génétique inter et intraspécifique dans le genre Gossypium L. : le polymorphisme enzymatique chez des espèces diploïdes et tétraploïdes de cotonnier, PhD Dissertation, Université Paris Sud, Paris, pp. 172Google Scholar
  7. Brubaker CL, Wendel JF (1993) On the specific status of Gossypium lanceolatum Todaro. Genet Res Crop Evol 40:165–170CrossRefGoogle Scholar
  8. Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum, Malvaceae) using nuclear restriction fragment length polymorphism (RFLP). Am J Bot 81:1309–1326CrossRefGoogle Scholar
  9. Brubaker CL, Bourland FM, Wendel JF (1999) The origin and domestication of cotton. In: Smith CW, Cothren JT (eds) Cotton. origin, history, technology, and production. John Wiley & Sons, New York, pp 3–31Google Scholar
  10. Coburn JR, Temnykh S, Paul EM, McCouch S (2002) Design and application of microsatellite marker panels for semi-automated genotyping of rice (Oryza sativa L). Crop Sci 42:2092–2099CrossRefGoogle Scholar
  11. Dejoode DR, Wendel JF (1992) Genetic diversity and origin of the Hawaiian islands cotton, Gossypium tomentosum. Am J Bot 79:1311–1319CrossRefGoogle Scholar
  12. Diwan N, Cregan PB (1997) Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor Appl Genet 95:723–733CrossRefGoogle Scholar
  13. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558PubMedCrossRefGoogle Scholar
  14. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  15. Han ZG, Guo W, Song XL, Zhang T (2004) Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton. Mol Genet Genomics 272:308–327PubMedCrossRefGoogle Scholar
  16. Han ZG, Wang C, Song XL, Guo W, Gou JY, Li C, Chen X, Zhang T (2006) Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet 112:430–439PubMedCrossRefGoogle Scholar
  17. Hutchinson JB (1951) Intra-specific differentiation in Gossypium hirsutum. Heredity 5:169–193Google Scholar
  18. Iqbal J, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’ of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554CrossRefGoogle Scholar
  19. Jain S, Jain RK, McCouch S (2004) Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor Appl Genet 109:965–977PubMedCrossRefGoogle Scholar
  20. Khan SA, Hussain D, Askari E, Stewart JM, Malik KA, Zafar Y (2000) Molecular phylogeny of Gossypium species by DNA fingerprinting. Theor Appl Genet 101:931–938CrossRefGoogle Scholar
  21. Lacape J-M, Nguyen TB, Thibivilliers S, Courtois B, Bojinov BM, Cantrell RG, Burr B, Hau B (2003) A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum  ×  Gossypium barbadense backcross population. Genome 46:612–626PubMedCrossRefGoogle Scholar
  22. Liu S, Cantrell RG, McCarty JCJ, Stewart JM (2000) Simple sequence repeat-based assessment of genetic diversity in cotton race stock accessions. Crop Sci 40:1459–1469CrossRefGoogle Scholar
  23. Liu D, Guo XP, Lin Z, Nie YC, Zhang X (2005) Genetic diversity of Asian cotton (Gossypium arboreum L.) in China evaluated by microsatellite analysis. Genet Res Crop Evol DOI: 10.1007/s10722-005-1304-yGoogle Scholar
  24. Macaulay M, Ramsay L, Powell W, Waugh R (2001) A representative, highly informative ‘genotyping set’ of barley SSRs. Theor Appl Genet 106:801–809CrossRefGoogle Scholar
  25. Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107(5):783–797PubMedCrossRefGoogle Scholar
  26. Masi P, Spagnoletti Zeuli PL, Donini P (2003) Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L). Mol Breed 11:303–313CrossRefGoogle Scholar
  27. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  28. Nguyen TB, Giband M, Brottier P, Risterucci A-M, Lacape J-M (2004) Wide coverage of tetraploid cotton genome using newly developed microsatellite markers. Theor Appl Genet 109:167–175PubMedCrossRefGoogle Scholar
  29. Park Y-H, Alabady MS, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, El-Shihy OM, Cantrell RG, Ulloa M (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line (RIL) cotton population. Mol Genet Genomics 274:428–441PubMedCrossRefGoogle Scholar
  30. Peakal R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  31. Percival AE, Kohel RJ (1990) Distribution, collection, and evaluation of Gossypium. Adv Agronomy 44:225–256CrossRefGoogle Scholar
  32. Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton origin, history, technology, and production. John Wiley & Sons Inc., New York, pp 33–63Google Scholar
  33. Perrier X, Flori A, Bonnot F (2003) Methods of data analysis. In: Hamon S, Seguin M, Perrier X, Glaszmann J-C (eds) Genetic diversity of cultivated tropical plants. CIRAD, Montpellier (France), pp 31–63Google Scholar
  34. Pillay M, Myers GO (1999) Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Sci 39:1881–1886CrossRefGoogle Scholar
  35. Ponce MR, Robles P, Micol JL (1999) High-throughput genetic mapping in Arabidopsis thaliana. Mol Gen Genet 261(2):408–415PubMedCrossRefGoogle Scholar
  36. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222Google Scholar
  37. Powell W, Orozco-Castillo C, Chalmers KJ, Provan J, Waugh R (1995) Polymerase chain reaction-based assays for the characterization of plant genetic resources. Electrophoresis 16(9):1726–1730PubMedCrossRefGoogle Scholar
  38. Reddy OUK, Pepper AE, Abdurakhmonov I, Saha S, Jenkins JN, Brooks T, Bolek Y, El-Zik KM (2001) New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. J Cotton Sci 5:103–113Google Scholar
  39. Reed PW, Davies JL, Copeman JB, Bennett ST, Palmer SM, Pritchard LE, Gouch SCL, Kawaguchi Y, Cordell HJ, Balfour KM, Jenkins SC, Powell EE, Vignal A, Todd JA (1994) Chromosome specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nature Genet 7:390–395PubMedCrossRefGoogle Scholar
  40. Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee P, Delmonte TA, Ding X, Garza JJ, Marler BS, Park C-h, Pierce GJ, Rainey KM, Rastogi VK, Schulze SR, Trolinder N, Wendel JF, Wilkins TA, Williams-Coplin TD, Wing RA, Wright RJ, Zhao X, Zhu L, Paterson AH (2004) A 3347 locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417PubMedCrossRefGoogle Scholar
  41. Rungis D, Llewellyn D, Dennis ES, Lyon BR (2005) Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.) cultivars. Aus J Agr Res 56:301–307CrossRefGoogle Scholar
  42. Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91(12):5466–5470PubMedCrossRefGoogle Scholar
  43. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  44. Seignobos C, Schwendiman J (1991) Traditional cotton plants in Cameroon. Cot Fib Trop 46:322–332Google Scholar
  45. Small RL, Ryburn JA, Wendel JF (1999) Low levels of nucleotide diversity at homoeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol 16:491–501PubMedGoogle Scholar
  46. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272CrossRefGoogle Scholar
  47. Song QJ, Quigley CV, Nelson RL, Carter TE, Boerma HR, Strachan JL, Cregan PB (1999) A selected set of trinucleotide simple sequence repeat markers for soybean cultivar identification. Plant Var Seeds 12:207–220Google Scholar
  48. Stewart JM (1994) Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable GA, Forrester NW (eds) Challenging the future, Proceedings World Cotton Res. Conf. −1, Brisbane (AUS), pp 313–327Google Scholar
  49. Struss D, Plieske J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315CrossRefGoogle Scholar
  50. Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19PubMedGoogle Scholar
  51. Thuillet AC, Bataillon T, Sourdille P, David JL (2004) Factors affecting polymorphism at microsatellite loci in bread wheat [Triticum aestivum (L.) Thell]: effects of mutation processes and physical distance from the centromere. Theor Appl Genet 108(2):368–377PubMedCrossRefGoogle Scholar
  52. Tommasini L, Batley J, Arnold GM, Cooke RJ, Donini P, Lee D, Law JR, Lowe C, Moule C, Trick M, Edwards KJ (2003) The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet 106:1091–1101PubMedGoogle Scholar
  53. Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith SC, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260PubMedGoogle Scholar
  54. Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot 79:1291–1310CrossRefGoogle Scholar
  55. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agronomy 78:140–186Google Scholar
  56. Wendel JF, Percy RG (1990) Allozyme diversity and introgression in the Galapagos Islands endemic Gossypium darwinii and its relationship to continental G. barbadense. Biochem Syst Ecol 18:517–528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • J.-M. Lacape
    • 1
  • D. Dessauw
    • 2
  • M. Rajab
    • 3
  • J.-L. Noyer
    • 1
  • B. Hau
    • 4
  1. 1.Cirad, UMR PIAMontpellierFrance
  2. 2.Cirad, UPR Qualité des productions cotonnièresMontpellierFrance
  3. 3.INRA/CNRS – URGVEvry CedexFrance
  4. 4.Cirad, UPR Systèmes cotonniers en petit paysannatMontpellierFrance

Personalised recommendations