Molecular Breeding

, Volume 16, Issue 2, pp 103–112 | Cite as

Identification of QTLs Underlying Water-Logging Tolerance in Soybean

  • B. Cornelious
  • P. Chen
  • Y. Chen
  • N. de Leon
  • J.G. Shannon
  • D. Wang


Soil water-logging can cause severe damage to soybean [Glycine max (L.) Merr.] and results in significant yield reduction. The objective of this study was to identify quantitative trait loci (QTL) that condition water-logging tolerance (WLT) in soybean. Two populations with 103 and 67 F6:11 recombinant inbred lines (RILs) from A5403 × Archer (Population 1) and P9641 × Archer (Population 2), respectively, were used as the mapping populations. The populations were evaluated for WLT in manually flooded fields in 2001, 2002, and 2003. Significant variation was observed for WLT among the lines in the two populations. No transgressive tolerant segregants were observed in either population. Broad-sense heritability of WLT for populations 1 and 2 were 0.59 and 0.43, respectively. The tolerant and sensitive RILs from each population were selected to create a tolerant bulk and a sensitive bulk, respectively. The two bulks and the parents of each population were tested with 912 simple sequence repeat (SSR) markers to select candidate regions on the linkage map that were associated with WLT. Markers from the candidate regions were used to genotype the RILs in both populations. Both single marker analysis (SMA) and composite interval mapping (CIM) were used to identify QTL for WLT. Seventeen markers in Population 1 and 15 markers in Population 2 were significantly (p <0.0001) associated with WLT in SMA. Many of these markers were linked to Rps genes or QTL conferring resistance to Phytophthora sojae Kaufmann and Gerdemann. Five markers, Satt599 on linkage group (LG) A1, Satt160, Satt269, and Satt252 on LG F, and Satt485 on LG N, were significant (p <0.0001) for WLT in both populations. With CIM, a WLT QTL was found close to the marker Satt385 on LG A1 in Population 1 in 2003. This QTL explained 10% of the phenotypic variation and the allele that increased WLT came from Archer. In Population 2 in 2002, a WLT QTL was located near the marker Satt269 on LG F. This QTL explained 16% of the phenotypic variation and the allele that increased WLT also came from Archer.

Key words:

Genetic mapping Glycine max Quantitative trait locus (QTL) Recombinant inbred line (RIL) Water-logging tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arahana, V.S., Graef, G.L., Specht, J.E., Steadman, J.R., Eskridge, K.M. 2001Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybeanCrop Sci.41180188Google Scholar
  2. Basten, C.J., Weir, B.S., Zeng, Z.-B. 1999QTL Cartographerversion 1.13Department of Statistics, North Carolina State UniversityRaleighNorth CarolinaGoogle Scholar
  3. Boru, G., van Ginkel, M., Kronstad, W.E., Boerma, L. 2001Expression and inheritance of tolerance to waterlogging stress in wheatEuphytica1179198CrossRefGoogle Scholar
  4. Boyer, J.S. 1982Plant productivity and environmentScience218443448Google Scholar
  5. Burnham, K.D., Dorrance, A.E., Francis, D.M., Fioritto, R.J., St-Martin, S.K. 2003aRps8a new locus in soybean for resistance to Phytophthora sojaeCrop Sci.43101105Google Scholar
  6. Burnham, K.D., Dorrance, A.E., Van Toai, T.T., St Martin, S.K. 2003bQuantitative trait loci for partial resistance to Phytophthora sojae in soybeanCrop Sci.4316101617Google Scholar
  7. Churchill, G.A., Doerge, R.W. 1994Empirical threshold values for quantitative trait mappingGenetics138963971PubMedGoogle Scholar
  8. Cregan, P.B., Quigley, C.V. 1997

    Simple sequence repeat DNA marker analysis

    Caetano-Anolles, G.Gresshoff, P.M. eds. DNA Markers: Protocols, Applications and OverviewsJohn Wiley and SonsNew York173185
    Google Scholar
  9. Demirbas, A., Rector, B.G., Lohness, D.G., Fioritto, R.J., Graef, G.L., Cregan, P.B., Shoemaker, R.C., Specht, J.E. 2001Simple Sequence Repeat Markers Linked to the Soybean Rps Genes for Phytophthora ResistanceCrop Sci.4112201227Google Scholar
  10. Diers, B.W., Mansur, L., Imsande, J., Shoemaker, R.C. 1992Mapping Phytophthora resistance loci in soybean with restriction fragment length polymorphism markersCrop Sci.32377383Google Scholar
  11. Fehr, W.R. 1987Principles of Cultivar DevelopmentMcGraw-Hill, Inc.New YorkGoogle Scholar
  12. Fehr, W.R., Caviness, C.E. 1977Stages of Soybean Development. Extension Bulletin 80Iowa State UniversityAmes, IowaGoogle Scholar
  13. Glover, K.D., Scott, R.A. 1998Heritability and phenotypic variation of tolerance to Phytophthora root rot of soybeanCrop Sci.3814951500Google Scholar
  14. Jansen, R., Stam, P. 1994High resolution of quantitative traits into multiple loci via interval mappingGenetics13614471455PubMedGoogle Scholar
  15. Kisha, T., Sneller, C.H., Diers, B.W. 1997Relationship between genetic distance among parents and genetic variance in populations of soybeanCrop Sci.3713171325Google Scholar
  16. Kosambi, D.D. 1944The estimation of map distance from recombination valuesAnn. Eugen.12172175Google Scholar
  17. Linkemer, G., Board, J.E., Musgrave, M.E. 1998Waterlogging effect on growth and yield components of late-planted soybeanCrop Sci.3815761584PubMedGoogle Scholar
  18. Oosterhuis, D.M., Scott, H.D., Hampton, R.E., Wullschleger, S.D. 1990Physiological response of two soybean [Glycine max (L.) Merr.] cultivars to short-term floodingEnviron. Exp. Bot.308592CrossRefGoogle Scholar
  19. Reyna, N., Cornelious, B., Shannon, J.G., Sneller, C.H. 2003Evaluation of a QTL for waterlogging tolerance in southern soybean germplasmCrop Sci.4320772082Google Scholar
  20. SAS Institute Inc.2000SAS/STAT Software Version 8SAS Institute IncCary, NCGoogle Scholar
  21. Scott, H.D., DeAngulo, J., Daniels, M.B., Wood, L.S. 1989Flood duration effects on soybean growth and yieldAgron. J.81631636Google Scholar
  22. Scott, H.D., DeAngulo, J., Wood, L.S., Pitts, D.J. 1990Influence of temporary flooding at three growth stages on soybean growth on a clayey soilJ. Plant Nutr.1310451071Google Scholar
  23. Setter, T.L., Ellis, M., Lourance, E.V., Ella, E.S., Mishra Senadhira, S.B., Sarkarung, S., Datta, S. 1997Physiology and genetics of submergence tolerance of riceAnn. Bot.796171Google Scholar
  24. Song, Q.J., Marek, L.F., Shoemaker, R.C., Lark, K.G., Concibido, V.C., Delannay, X., Specht, J.E., Cregan, P.B. 2004A new integrated genetic linkage map of the soybeanTheor. Appl. Genet.109122128CrossRefPubMedGoogle Scholar
  25. SoyBase database . (accessed 6 Nov. 2004; verified 6 Apr. 2005).Google Scholar
  26. Sripongpangkul, K., Posa, G.B.T., Senadhira, D.W., Brar, D., Huang, H., Khush, G.S., Li, Z.K. 2000Genes/QTLs affecting flood tolerance in riceTheor. Appl. Genet.10110741081CrossRefGoogle Scholar
  27. Van Ooijen, J.W., Voorrips, R.E. 2001JoinMap® Version 3.0, Software for the Calculation of Genetic Linkage MapsPlant Research InternationalWageningen, The NetherlandsGoogle Scholar
  28. Van Toai, T.T., Beuerlein, J.E., Schmitthenner, A.F., St Martin, S.K. 1994Genetic variability for flooding tolerance in soybeansCrop Sci.3411121115Google Scholar
  29. Van Toai, T.T., St. Martin, S.K., Chase, K., Boru, G., Schnipke, V., Schmitthenner, A.F., Lark, K.G. 2001Identification of a QTL associated with tolerance of soybean to soil waterloggingCrop Sci.4112471252Google Scholar
  30. Voorrips, R.E. 2002MapChart: Software for the graphical presentation of linkage maps and QTLsJ. Hered.937778CrossRefPubMedGoogle Scholar
  31. Walker, A.K., Schmitthenner, A.F. 1984Heritability of tolerance to Phytophthora rot in soybeanCrop Sci.24490491Google Scholar
  32. Wang, D., Shi, J., Carlson, S.R., Cregan, P.B., Ward, R.W, Diers, B.W. 2003A low-cost and high-throughput system for high-resolution genotyping with microsatellite DNA markersCrop Sci.4318281832Google Scholar
  33. Weng, C., Yu, K., Anderson, T.R., Poysa, V. 2001Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7J. Hered.92442446CrossRefPubMedGoogle Scholar
  34. Xu, K., Mackill, D.J. 1996A major locus for submergence tolerance mapped on rice chromosome 9Mol. Breed.2219224CrossRefGoogle Scholar
  35. Zeng, Z.B. 1994Precision mapping of quantitative trait lociGenetics13614571468PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • B. Cornelious
    • 1
  • P. Chen
    • 1
  • Y. Chen
    • 2
  • N. de Leon
    • 2
  • J.G. Shannon
    • 3
  • D. Wang
    • 2
  1. 1.Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Crop and Soil SciencesMichigan State UniversityEast LansingUSA
  3. 3.University of Missouri-Delta CenterPortagevilleUSA

Personalised recommendations