Molecular Breeding

, Volume 16, Issue 1, pp 79–91 | Cite as

Approaches to Minimize Variation of Transgene Expression in Plants

  • Katleen M.J. Butaye
  • Bruno P.A. Cammue
  • Stijn L. Delauré
  • Miguel F.C. De Bolle
Mini Review


Genetic transformation of plants has become a widely used technology that serves multiple purposes in plant biology research. However, considerable variation of transgene expression is often observed within populations of transgenic plants transformed with the same transgene construct. This inter-transformant variation of transgene expression hampers proper evaluation of transgenes and might be most undesirable when high-throughput transgene screening is intended. The general plant transformation strategy today is to generate a sufficiently high number of transgenic plants to find some transformants with the desired level of expression. To reduce cost, labor and interpretational flaws, multiple efforts are being directed toward achieving stable expression of transgenes with an expected level of expression. Various factors are thought to contribute to transgene expression variation including the transgene copy number, RNA silencing, transgene insertion site and the employment of certain regulatory sequences to drive transgene expression. This review provides an update on current methodologies to minimize inter-individual variation of transgene expression in nuclear transformed plants.


Arabidopsis thaliana Gene silencing mutants High-throughput evaluation of transgenes Plant transformation RNA silencing Variation of transgene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, G.C., Hall, G.E., Childs, L.C., Weissinger, A.K., Spiker, S., Thompson, W.F. 1993Scaffold attachment regions increase reporter gene expression in stably transformed plant cellsPlant Cell5603613CrossRefPubMedGoogle Scholar
  2. Allen, G.C., Hall, G.E., Michalowski, S., Newman, W., Spiker, S., Weissinger, A.K., Thompson, W.F. 1996High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobaccoPlant Cell5603613CrossRefGoogle Scholar
  3. Allen, G.C., Spiker, S., Thompson, W.F. 2000Use of matrix attachment regions (MARs) to minimize transgene silencingPlant Mol. Biol43361376CrossRefPubMedGoogle Scholar
  4. Aufsatz, W., Mette, M.F., Winden, J., Matzke, A.J.M., Matzke, M. 2002RNA-directed DNA methylation in ArabidopsisProc. Natl. Acad. Sci. USA991649916506Google Scholar
  5. Baulcombe, D. 2004RNA silencing in plantsNature431356363CrossRefPubMedGoogle Scholar
  6. Bennet, J. 1993

    Genes for crop improvement

    Setlow, J.K. eds. Genetic Engineering – Volume 15PlenumNew York165189
    Google Scholar
  7. Berezney, R., Coffey, D.S. 1974Identification of a nuclear protein matrixBiochem. Biophys. Res. Commun6014101417CrossRefPubMedGoogle Scholar
  8. Bhat, S.R., Srinivasan, S. 2002Molecular and genetic analyses of transgenic plants: considerations and approachesPlant Sci164673681CrossRefGoogle Scholar
  9. Binet, M.-N., Weil, J.-H., Tessier, L.-H. 1991Structure and expression of sunflower ubiquitin genesPlant Mol. Biol17395407CrossRefPubMedGoogle Scholar
  10. Birch, R.G. 1997Plant transformation: problems and strategies for practical applicationAnnu. Rev. Plant Physiol. Plant Mol. Biol48297326CrossRefPubMedGoogle Scholar
  11. Bode, J., Benham, C., Knopp, A., Mielke, C. 2000Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements)Crit. Rev. Eukaryot. Gene Expr107390PubMedGoogle Scholar
  12. Borisjuk, N., Borisjuk, L., Komarnytsky, S., Timeva, S., Hemleben, V., Gleba, Y., Raskin, I. 2000Tobacco ribosomal DNA spacer element stimulates amplification and expression of heterologous genesNat. Biotechnol1813031306CrossRefPubMedGoogle Scholar
  13. Bourdon, V., Harvey, A., Lonsdale, C.M. 2001Introns and their positions affect the translational activity of mRNA in plant cellsEMBO Rep2394398PubMedGoogle Scholar
  14. Breyne, P., Montagu, M., Gheysen, G. 1994The role of scaffold attachment regions in the structural and functional organization of plant chromatinTransgenic Res3195202CrossRefPubMedGoogle Scholar
  15. Brouwer, C., Bruce, W., Maddock, S., Avramova, Z., Bowen, B. 2002Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5′ ADH1 matrix attachment regionPlant Cell1422512264CrossRefPubMedGoogle Scholar
  16. Burch-Smith, T.M., Anderson, J.C., Martin, G.B., Dinesh-Kumar, S.P. 2004Applications and advantages of virus-induced gene silencing for gene function in plantsPlant J39734746CrossRefPubMedGoogle Scholar
  17. Butaye, K.J.M., Goderis, I.J.W.M., Wouters, P.F.J., Pues, J.M.-T.G., Delauré, S.L., Broekaert, W.F., Depicker, A., Cammue, B.P.A., De Bolle, M.F.C. 2004Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regionsPlant J39440449CrossRefPubMedGoogle Scholar
  18. Chilton, M-D.M., Que, Q. 2003Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integrationPlant Physiol133956965CrossRefPubMedGoogle Scholar
  19. Cockerill, P.N., Garrard, W.T. 1986Chromosomal loop anchorage sites appear to be evolutionarily conservedFEBS Lett20457CrossRefPubMedGoogle Scholar
  20. Copenhaver, G.P., Browne, W.E., Preuss, D. 1998Assaying genome-wide recombination and centromere function with Arabidopsis tetradsProc. Natl. Acad. Sci. USA6247252CrossRefGoogle Scholar
  21. Dalmay, T., Hamilton, A., Rudd, S., Angell, S., Baulcombe, D.C. 2000An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virusCell101543553CrossRefPubMedGoogle Scholar
  22. Dalmay, T., Horsefield, R., Braunstein, T.H., Baulcombe, D.C. 2001SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in ArabidopsisEMBO J2020692078CrossRefPubMedGoogle Scholar
  23. Day, C.D., Lee, E., Kobayashi, J., Holappa, L.D., Albert, H., Ow, D.W. 2000Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silencedGenes Dev1428692880CrossRefPubMedGoogle Scholar
  24. De Block, M., Debrouwer, D. 1991Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locusTheor. Appl. Genet82257263Google Scholar
  25. De Bolle, M.F.C., Butaye, K.M.J., Coucke, W.J.W., Goderis, I.J.W.M., Wouters, P.F.J., Boxel, N., Broekaert, W.F., Cammue, B.P.A. 2003Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thalianaPlant Sci165169179CrossRefGoogle Scholar
  26. De Buck, S., Jacobs, A., Montagu, M., Depicker, A. 1999The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integrationPlant J20295304PubMedGoogle Scholar
  27. De Buck, S., Windels, P., Loose, M., Depicker, A. 2004Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable β-glucuronidase accumulation levelsCell. Mol. Life Sci6126322645CrossRefPubMedGoogle Scholar
  28. De Jaeger, G., Scheffer, S., Jacobs, A., Zambre, M., Zobell, O., Goossens, A., Depicker, A., Angenon, G. 2002Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequencesNat. Biotechnol2012651268CrossRefPubMedGoogle Scholar
  29. De Loose, M., Danthinne, X., Bockstaele, E., Montagu, M., Depicker, A. 1995Different 5′ leader sequences modulate glucuronidase accumulation levels in transgenic Nicotiana tabacum plantsEuphytica85209216CrossRefGoogle Scholar
  30. Denli, A.M., Hannon, G.J. 2003RNAi: an ever-growing puzzleTrends Biochem. Sci28196201CrossRefPubMedGoogle Scholar
  31. Depicker, A., Stachel, S., Dhaese, P., Zambryski, P., Goodman, H.M. 1982Nopaline synthase: transcript mapping and DNA sequenceJ. Mol. Appl. Genet1561573PubMedGoogle Scholar
  32. Depicker, A., Montagu, M. 1997Post-transcriptional gene silencing in plantsCurr. Opin. Cell Biol9373382CrossRefPubMedGoogle Scholar
  33. De Wilde, C., Podevin, N., Windels, P., Depicker, A. 2001Silencing of antibody genes in plants with single-copy transgene inserts as a result of gene dosage effectsMol. Genet. Genomics265647653CrossRefPubMedGoogle Scholar
  34. Duncan, R.R. 1997Tissue culture-induced variation and crop improvementAdv. Agron58201240Google Scholar
  35. Elmayan, T., Vaucheret, H. 1996Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionallyPlant J9787797CrossRefGoogle Scholar
  36. Epinat, J.-C., Arnould, S., Chames, P., Rochaix, P., Desfontaines, D., Puzin, C., Patin, A., Zanghellini, A., Paques, F., Lacroix, E. 2003A novel engineered meganuclease induces homologous recombination in yeast and mammalian cellsNucleic Acids Res3129522962CrossRefPubMedGoogle Scholar
  37. Errampalli, D., Patton, D., Castle, L., Mickelson, L., Hansen, K., Schnall, J., Feldmann, K., Meinke, D. 1991Embryonic lethals and T-DNA insertional mutagenesis in ArabidopsisPlant Cell3149157CrossRefPubMedGoogle Scholar
  38. Fagard, M., Boutet, S., Morel, J.B., Bellini, C., Vaucheret, H. 2000AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungiand RNA interference in animalsProc. Natl. Acad. Sci. USA971165011654CrossRefPubMedGoogle Scholar
  39. Finnegan, E.J., Matzke, M.A. 2003The small RNA worldJ. Cell Sci11646894693CrossRefPubMedGoogle Scholar
  40. Fischer, R., Stoger, E., Schillberg, S., Christou, P., Twyman, R.M. 2004Plant-based production of biopharmaceuticalsCurr. Opin. Plant Biol7152158CrossRefPubMedGoogle Scholar
  41. Francis, K.E., Spiker, S. 2005Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrationsPlant J41464477PubMedGoogle Scholar
  42. Fukushige, S., Sauer, B. 1992Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cellsProc. Natl. Acad. Sci. USA8979057909PubMedGoogle Scholar
  43. Gelvin, S.B. 2003Agrobacterium-mediated plant transformation: the biology behind the “Gene-Jockeying” toolMicrobiol. Mol. Biol. Rev671637CrossRefPubMedGoogle Scholar
  44. Gheysen, G., Villarroel, R., Montagu, M. 1991Illegitimate recombination in plants: a model for T-DNA integrationGenes Dev5287297PubMedGoogle Scholar
  45. Grevelding, C., Fantes, V., Kemper, E., Schell, J., Masterson, R. 1993Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discsPlant Mol. Biol23847860CrossRefPubMedGoogle Scholar
  46. Grimes, B.R., Rhoades, A.A., Willard, H.F. 2002Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formationMol. Ther5798805CrossRefPubMedGoogle Scholar
  47. Hall, A.E., Keith, K.C., Hall, S.E., Copenhaver, G.P., Preuss, D. 2004The rapidly evolving field of plant centromeresCurr. Opin. Plant Biol2108114CrossRefGoogle Scholar
  48. Halweg, C., Thompson, W.F., Spiker, S. 2005The Rb7 matrix attachment region increases the likelihood and magnitude of transgene expression in tobacco cells: a flow cytometric studyPlant Cell17418429CrossRefPubMedGoogle Scholar
  49. Hancock, R. 2000A new look at the nuclear matrixChromosoma109219225CrossRefPubMedGoogle Scholar
  50. Hansen, G., Wright, M.S. 1999Recent advances in the transformation of plantsTrends Plant Sci4226231CrossRefPubMedGoogle Scholar
  51. Hobbs, S.L.A., Warketin, T.D., DeLong, C.M.O. 1993Transgene copy number can be positively or negatively associated with transgene expressionPlant Mol. Biol211726CrossRefPubMedGoogle Scholar
  52. Hohn, B., Puchta, H. 2003Some like it sticky: targeting of the rice gene WAXYTrends Plant Sci85153CrossRefPubMedGoogle Scholar
  53. Holmes-Davis, R., Comai, L. 1998Nuclear matrix attachment regions and plant gene expressionTrends Plant Sci39197CrossRefGoogle Scholar
  54. Jefferson, R.A. 1986β-Glucuronidase from E. coli as a gene-fusion markerProc. Natl. Acad. Sci. USA8384478451PubMedGoogle Scholar
  55. Johansen, L.K., Carrington, J.C. 2001Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression systemPlant Physiol126390398CrossRefGoogle Scholar
  56. Jorgensen, R.A., Cluster, P.D., English, J., Que, Q., Napoli, C.A. 1996Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense vs. antisense constructs and single-copy vs. complex T-DNA sequencesPlant Mol. Biol31957973CrossRefPubMedGoogle Scholar
  57. Kaeppler, S.M., Kaeppler, H.F., Rhee, Y. 2000Epigenetic aspects of somaclonal variation in plantsPlant Mol. Biol43179188CrossRefPubMedGoogle Scholar
  58. Kohli, A., Twyman, R.M., Abranches, R., Wegel, E., Stoger, E., Christou, P. 2003Transgene integration, organization and interaction in plantsPlant Mol. Biol52247258CrossRefPubMedGoogle Scholar
  59. Komari, T., Ishida, Y., Hiei, Y. 2004

    Plant transformation technology: Agrobacterium-mediated transformation

    Christou, P.Klee, H. eds. Handbook of Plant BiotechnologyJohn Wiley and SonsChichester233261
    Google Scholar
  60. Koprek, T., Rangel, S., McElroy, D., Louwerse, J.D., Williams-Carrier, R.E., Lemaux, P.G. 2001Transposon-mediated single-copy gene delivery leads to increased transgene expression in barleyPlant Physiol12513541362CrossRefPubMedGoogle Scholar
  61. Kumar, S., Fladung, M. 2001Controlling transgene integration in plantsTrends Plant Sci6155159CrossRefPubMedGoogle Scholar
  62. Kusaba, M. 2004RNA interference in crop plantsCurr. Opin. Biotechnol15139143CrossRefPubMedGoogle Scholar
  63. Laemmli, U.K., Käs, E., Poljak, L., Adachi, Y. 1992Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domainsCurr. Opin. Genet. Dev2275285CrossRefPubMedGoogle Scholar
  64. Lanfranco, L. 2003Engineering crops, a deserving ventureRiv. Biol963154PubMedGoogle Scholar
  65. Lindsey, K., Wei, W., Clarke, M.C., McArdle, H.F., Rooke, L.M., Topping, J.F. 1993Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plantsTransgenic Res23347CrossRefPubMedGoogle Scholar
  66. Liu, J.-W., Tabe, L.M. 1998The influences of two plant matrix attachment regions (MARs) on gene expression in transgenic plantsPlant Cell Physiol39115123PubMedGoogle Scholar
  67. Lloyd, A. 2003

    Vector construction for gene overexpression as a tool to elucidate gene function

    Grotewold, E. eds. Methods in Molecular Biology – Volume 236, Plant Functional GenomicsHumana PressTotowa329344
    Google Scholar
  68. Lloyd, A., Plaisier, C.L., Carroll, D., Drews, G.N. 2005Targeted mutagenesis using zinc-finger nucleases in ArabidopsisProc. Natl. Acad. Sci. USA10222322237CrossRefPubMedGoogle Scholar
  69. Lu, R., Martin-Hernandez, A.M., Peart, J.R., Malcuit, I., Baulcombe, D.C. 2003Virus-induced gene silencing in plantsMethods30296303PubMedGoogle Scholar
  70. Mallory, A.C., Parks, G., Endres, M.W., Baulcombe, D., Bowman, L.H., Pruss, G.J., Vance, V.B. 2002The amplicon-plus system for high-level expression of transgenes in plantsNat. Biotechnol20622625CrossRefPubMedGoogle Scholar
  71. Mankin, S.L., Allen, G.C., Phelan, T., Spiker, S., Thompson, W.F. 2003Elevation of transgene expression level by flanking matrix attachment regions (MAR) is promoter dependent: a study of the interactions of six promoters with the RB7 3′ MARTransgenic Res12312CrossRefPubMedGoogle Scholar
  72. Matzke, A.J., Matzke, M.A. 1998Position effects and epigenetic silencing of plant transgenesCurr. Opin. Plant Biol1142148CrossRefPubMedGoogle Scholar
  73. Matzke, M.A., Aufsatz, W., Kanno, T., Mette, M.F., Matzke, A.J. 2002Homology-dependent gene silencing and host defense in plantsAdv. Genet46235275PubMedGoogle Scholar
  74. Matzke, M.A., Matzke, A.J. 2003RNAi extends its reachScience30110601061CrossRefPubMedGoogle Scholar
  75. Matzke, M.A., Aufsatz, W., Kanno, T., Daxinger, L., Papp, I., Mette, M.F., Matzke, A.J. 2004Genetic analysis of RNA-mediated transcriptional gene silencingBiochim. Biophys. Acta1677129141PubMedGoogle Scholar
  76. Meyer, P., Saedler, H. 1996Homology-dependent gene silencing in plantsAnnu. Rev. Plant Physiol472348CrossRefGoogle Scholar
  77. Meyer, P. 2000Transcriptional transgene silencing and chromatin componentsPlant Mol. Biol43221234CrossRefPubMedGoogle Scholar
  78. Meza, T.J., Stangeland, B., Mercy, I.S., Skarn, M., Nymoen, D.A., Berg, A., Butenko, M.A., Hakelien, A.M., Haslekas, C., Meza-Zepeda, L.A., Aalen, R.B. 2002Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencingNucleic Acids Res3045564566CrossRefPubMedGoogle Scholar
  79. Mielke, C., Kohwi, Y., Kohwi-Shigematsu, T., Bode, J. 1990Hierarchical binding of DNA fragments derived from scaffold-attached regions: correlation of properties in vitro and function in vivoBiochemistry2974757485CrossRefPubMedGoogle Scholar
  80. Mirkovitch, J., Mirault, M.E., Laemmli, U.K. 1984Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffoldCell39223232CrossRefPubMedGoogle Scholar
  81. Mlynárová, L., Loonen, A., Heldens, J., Jansen, R.C., Keizer, P., Stiekema, W.J., Nap, J.P. 1994Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated regionPlant Cell6417426CrossRefPubMedGoogle Scholar
  82. Mlynárová, L., Jansen, R.C., Conner, A.J., Stiekema, W.J., Nap, J.P. 1995The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plantsPlant Cell7599609CrossRefPubMedGoogle Scholar
  83. Mlynárová, L., Hricova, A., Loonen, A., Nap, J.P. 2003The presence of a chromatin boundary appears to shield a transgene in tobacco from RNA silencingPlant Cell1522032217CrossRefPubMedGoogle Scholar
  84. Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Jouette, D., Lacombe, A.M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T.A., Vaucheret, H. 2000Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistanceCell101533542CrossRefPubMedGoogle Scholar
  85. Muskens, M.W., Vissers, A.P., Mol, J.N., Kooter, J.M. 2000Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencingPlant Mol. Biol43243260CrossRefPubMedGoogle Scholar
  86. Nam, J., Matthysse, A.G., Gelvin, S.B. 1997Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integrationPlant Cell9317333CrossRefPubMedGoogle Scholar
  87. Odell, J.T., Nagy, F., Chua, N.H. 1985Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoterNature313810812CrossRefPubMedGoogle Scholar
  88. Outchkourov, N.S., Peters, J., Jong, J., Rademakers, W., Jongsma, M.A. 2003The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plantsPlanta21610031012PubMedGoogle Scholar
  89. Ow, D.W. 2002Recombinase-directed plant transformation for the post-genomic eraPlant Mol. Biol48183200CrossRefPubMedGoogle Scholar
  90. Park, Y.D., Papp, I., Moscone, E.A., Iglesias, V.A., Vaucheret, H., Matzke, A.J., Matzke, M.A. 1996Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activityPlant J9183194CrossRefPubMedGoogle Scholar
  91. Pawlowski, W.P., Somers, D.A. 1998Transgenic DNA integrated into the oat genome is frequently interspersed by host DNAProc. Natl. Acad. Sci. USA951210612110CrossRefPubMedGoogle Scholar
  92. Peach, C., Velten, J. 1991Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promotersPlant Mol. Biol174960CrossRefPubMedGoogle Scholar
  93. Petersen, K., Leah, R., Knudsen, S., Cameron-Mills, V. 2002Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barleyPlant Mol. Biol494558CrossRefPubMedGoogle Scholar
  94. Phillips, R.L., Kaeppler, S.M., Olhoft, P. 1994Genetic instability of plant tissue cultures: Breakdown of normal controlsProc. Natl. Acad. Sci. USA9152225226PubMedGoogle Scholar
  95. Phi-van, L., Strätling, W.H. 1988The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domainEMBO J7655664PubMedGoogle Scholar
  96. Pickford, A.S., Cogoni, C. 2003RNA-mediated gene silencingCell Mol. Life Sci60871882PubMedGoogle Scholar
  97. Pruss, G.J., Lawrence, C.B., Bass, T., Li, Q.Q., Bowman, L.H., Vance, V. 2004The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogensVirology320107120CrossRefPubMedGoogle Scholar
  98. Puchta, H., Dujon, B., Hohn, B. 1993Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific nucleaseNucleic Acids Res2150345040PubMedGoogle Scholar
  99. Reddy, M.S., Dinkins, R.D., Collins, G.B. 2003Gene silencing in transgenic soybean plants transformed via particle bombardmentPlant Cell Rep21676683PubMedGoogle Scholar
  100. Rethmeier, N., Seurinck, J., Montagu, M., Cornelissen, M. 1997Intron-mediated enhancement of transgene expression in maize is a nucleargene-dependent processPlant J12895909CrossRefPubMedGoogle Scholar
  101. Romano, A., Raemakers, K., Bernardi, J., Visser, R., Mooibroek, H. 2003Transgene organization in potato after particle bombardment-mediated (co-)transformation using plasmids and gene cassettesTransgenic Res12461473CrossRefPubMedGoogle Scholar
  102. Rose, A.B. 2004The effect of intron location on intron-mediated enhancement of gene expression in ArabidopsisPlant J40744751CrossRefPubMedGoogle Scholar
  103. Roth, B.M., Pruss, G.J., Vance, V.B. 2004Plant viral suppressors of RNA silencingVirus Res10297108CrossRefPubMedGoogle Scholar
  104. Schaefer, D.G. 2002A new moss genetics: targeted mutagenesis in Physcomitrella patensAnnu. Rev. Plant Biol53477501CrossRefPubMedGoogle Scholar
  105. Scheid, O.M., Paszkowski, J., Potrykus, I. 1991Reversible inactivation of a transgene in Arabidopsis thalianaMol. Gen. Genet228104112CrossRefPubMedGoogle Scholar
  106. Schöffl, F., Schröder, G., Kliem, M., Rieping, M. 1993An SAR sequence containing 395 bp DNA fragment mediates enhancedgene-dosage-correlated expression of chimaeric heat shock gene in transgenic tobacco plantsTransgenic Res293100CrossRefPubMedGoogle Scholar
  107. Schlögelhofer, P., Nizhynska, V., Feik, N., Chambon, C., Potuschak, T., Wanzenböck, E.-M., Schweizer, D., Bachmair, A. 2002The upstream Sal repeat-containing segment of Arabidopsis thaliana ribosomal DNA intergenic (IGR) enhances the activity of adjacent protein-coding genesPlant Mol. Biol49655667PubMedGoogle Scholar
  108. Sidorenko, L., Bruce, W., Maddock, S., Tagliani, L., Li, X., Daniels, M., Peterson, T. 2003Functional analysis of two matrix attachment region (MAR) elements in transgenic maize plantsTransgenic Res12137154CrossRefPubMedGoogle Scholar
  109. Siebert, R., Puchta, H. 2002Efficient repair of genomic double-strand breaks by homologous recombination between repeated sequences in the plant genomePlant Cell1411211131CrossRefPubMedGoogle Scholar
  110. Sijen, T., Wellink, J., Hiriart, J.B., Kammen, A. 1996RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted regionsPlant Cell822772294CrossRefPubMedGoogle Scholar
  111. Somerville, C., Somerville, S. 1999Plant functional genomicsScience285380383CrossRefPubMedGoogle Scholar
  112. Spiker, S., Thompson, W.F. 1996Nuclear matrix attachment regions and transgene expression in plantsPlant Physiol1101521PubMedGoogle Scholar
  113. Srivastava, V., Anderson, O.D., Ow, D.W. 1999Single-copy transgenic wheat generated through the resolution of complex integration patternsProc. Natl. Acad. Sci. USA961111711121CrossRefPubMedGoogle Scholar
  114. Srivastava, V., Ariza-Nieto, M., Wilson, A. 2004Cre-mediated site-specific gene integration for consistent transgene expression in ricePlant Biotechnol. J2169179CrossRefGoogle Scholar
  115. Stam, M., de Bruin, R., Kenter, S., Hoorn, R.A.L., Blokland, R., Mol, J.N.M., Kooter, J.M. 1997Post-transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeatsPlant J16382CrossRefGoogle Scholar
  116. Susi, P., Hohkuri, M., Wahlroos, T., Kilby, N.J. 2004Characteristics of RNA silencing in plants: similarities and differences across kingdomsPlant Mol. Biol54157174CrossRefPubMedGoogle Scholar
  117. Svabados, L., Kovacs, I., Oberschall, A., Abraham, E., Kerekes, I., Zsigmond, L., Nagy, R., Alvarado, M., Krasovskaja, I., Gal, M., Berente, A., Redei, G.P., Haim, A.B., Koncz, C. 2002Distribution of 1000 sequenced T-DNA tags in Arabidopsis genomePlant J32233242CrossRefPubMedGoogle Scholar
  118. Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., Iida, S. 2002Efficient gene targeting by homologous recombination in riceNat. Biotechnol2010301034CrossRefPubMedGoogle Scholar
  119. Terada, R., Asao, H., Iida, S. 2004A large-scale Agrobacterium-mediated transformation procedure with a strong positive-negative selection for gene targeting in rice (Oryza sativa L.)Plant Cell Rep22653659CrossRefPubMedGoogle Scholar
  120. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., Fischer, R. 2003Molecular farming in plants: host systems and expression technologyTrends Biotechnol21570578CrossRefPubMedGoogle Scholar
  121. Ülker, B., Allen, G.C., Thompson, W.F., Spiker, S., Weissinger, A.K. 1999A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plantsPlant J18253263CrossRefGoogle Scholar
  122. Urawa, H., Hidaka, M., Ishiguro, S., Okada, K., Horiuchi, T. 2001Enhanced homologous recombination caused by the non-transcribed spacer of the rDNA in ArabidopsisMol. Genet. Genomics266546555CrossRefPubMedGoogle Scholar
  123. Vain, P., Worland, B., Kohli, A., Snape, W., Christou, P., Allen, G.C., Thompson, W.F. 1999Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progenyPlant J18233242CrossRefGoogle Scholar
  124. Vain, P., James, A., Worland, B., Snape, W. 2002Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardmentTheor. Appl. Genet105878889CrossRefPubMedGoogle Scholar
  125. Geest, A.H.M., Hall, G.E.,Jr., Spiker, S., Hall, T.C. 1994The β-phaseolin gene is flanked by matrix attachment regionsPlant J6413423CrossRefGoogle Scholar
  126. Veluthambi, K., Gupta, A.K., Sharma, A. 2003The current status of plant transformation technologiesCurr. Sci84368380Google Scholar
  127. Verdaguer, B., Kochko, A., Beachy, R.N., Fauquet, C. 1996Isolation and expression in transgenic tobacco and rice plants of the cassava vein mosaic virus (CVMV) promoterPlant Mol. Biol3111291139PubMedGoogle Scholar
  128. Voinnet, O., Rives, S., Mestre, P., Baulcombe, D. 2003An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virusPlant J33949956CrossRefPubMedGoogle Scholar
  129. Wang, M.B., Waterhouse, P.M. 2000High efficiency silencing of a beta-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylationPlant Mol. Biol436782CrossRefPubMedGoogle Scholar
  130. Wang, M.B., Waterhouse, P.M. 2002Application of gene silencing in plantsCurr. Opin. Plant Biol5146150CrossRefPubMedGoogle Scholar
  131. Waterhouse, P.M., Helliwell, C.A. 2003Exploring plant genomes by RNA-induced gene silencingNat. Rev. Genet42938CrossRefPubMedGoogle Scholar
  132. Xie, Z., Johansen, L.K., Gustafson, A.M., Kasschau, K.D., Lellis, A.D., Zilberman, D., Jacobsen, S., Carrington, J.C. 2004Genetic and functional diversification of small RNA pathways in plantsPLoS Biol2e104CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Katleen M.J. Butaye
    • 1
  • Bruno P.A. Cammue
    • 1
  • Stijn L. Delauré
    • 1
  • Miguel F.C. De Bolle
    • 1
  1. 1.Centre of Microbial and Plant GeneticsKatholieke Universiteit LeuvenHeverleeBelgium

Personalised recommendations