Molecular Breeding

, Volume 16, Issue 3, pp 247–260 | Cite as

Transformation of Plants with Multiple Cassettes Generates Simple Transgene Integration Patterns and High Expression Levels

  • Pawan K. Agrawal
  • Ajay Kohli
  • Richard M. Twyman
  • Paul Christou


We transformed rice (Oryza sativa L.) simultaneously with five minimal cassettes, each containing a promoter, coding region and polyadenylation site but no vector backbone. We found that multi-transgene cotransformation was achieved with high efficiency using multiple cassettes, with all transgenic plants we generated containing at least two transgenes and 16% containing all five. About 75% of the plants had simple transgene integration patterns with a predominance of single-copy insertions. The expression levels for all transgenes, and the overall coexpression frequencies, were much higher than previously reported in whole plasmid transformants. Four of five lines analyzed for transgene expression stability in subsequent generations showed stable and high expression levels over generations. A simple model is proposed, which accounts for differences in the molecular make-up and the expression profile of transgenic plants generated using whole plasmid or minimal cassettes. We conclude that gene transfer using minimal cassettes is an efficient and rapid method for the production of transgenic plants containing and stably expressing several different transgenes. Our results facilitate effective manipulation of multi-gene pathways in plants in a single transformation step.


Plant transformation Cassette transformation Multigene transgenics Pathway engineering Gene expression Transgenic loci 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abranches, R., Santos, A.P., Wegel, E., Williams, S., Castillho, A., Christou, P., Shaw, P., Stoger, E. 2001Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphasePlant J.24713723Google Scholar
  2. Baruah-Wolff, J., Harwood, W.A., Lonsdale, D.A., Harvey, A., Hull, R., Snape, J.W. 1999Luciferase as a reporter gene for transformation studies in rice (Oryza sativa L.)Plant Cell Rep.18715720CrossRefGoogle Scholar
  3. Bishop, J.O., Smith, P. 1989Mechanism of chromosomal integration of microinjected DNAMol. Biol. Med.6283298PubMedGoogle Scholar
  4. Bradford, M.M. 1976A rapid and sensitive method for the quantification of microgram amounts of protein utilizing the principle of protein dye bindingAnal. Biochem.7248254Google Scholar
  5. Breitler, J.C., Labeyrie, A., Meynard, D., Legavre, T., Guiderdoni, E. 2002Efficient microprojectile bombardment-mediated transformation of rice using gene cassettesTheor. Appl. Genet.104709719CrossRefPubMedGoogle Scholar
  6. Chen, L., Marmey, P., Taylor, N.J., Brizard, J., Espinoza, C., D’Cruz, P., Huet, H., Zhang, S., Kochko, A., Beachy, R.N., Fauquet, C.M. 1998Expression and inheritance of multiple transgenes in rice plantsNat. Biotechnol.1610601064CrossRefPubMedGoogle Scholar
  7. Christou, P., Swain, W.F. 1990Cotransformation frequencies of foreign genes in soybean cell culturesTheor. Appl. Genet.79337341CrossRefGoogle Scholar
  8. Clark, A.J., Harold, G., Yull, F.E. 1997Mammalian cDNA and prokaryotic reporter sequences silence adjacent transgenes in transgenic miceNucleic Acids Res.2510091014PubMedGoogle Scholar
  9. Cooley, J., Ford, T., Christou, P. 1995Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle accelerationTheor. Appl. Genet.9097104CrossRefGoogle Scholar
  10. Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossel, V., Rao, M.N., Thomson, C., Montagu, M., Leemans, J. 1987Engineering herbicide resistance in plants by expression of a detoxifying enzymeEMBO J.625132518PubMedGoogle Scholar
  11. Edwards, K., Johnstone, C., Thompson, C. 1991A simple and rapid method for the preparation of plant genomic DNA for PCR analysisNucleic Acids Res.191349PubMedGoogle Scholar
  12. Feinberg, A.P., Vogelstein, B. 1983A technique for radiolabeling DNA restriction endonuclease fragments to high specific activityAnal. Biochem.132613CrossRefPubMedGoogle Scholar
  13. Fu, X., Duc, L.T., Fontana, S., Bong, B.B., Tinjuangjun, P., Sudhakar, D., Twyman, R.M., Christou, P., Kohli, A. 2000Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patternsTransgenic Res.91119CrossRefPubMedGoogle Scholar
  14. Gahakwa, D., Bano Maqbool, S., Fu, X., Sudhakar, D., Christou, P., Kohli, A. 2000Transgenic rice as a system to study the stability of transgene expression: multiple heterologous transgenes show similar behaviour in diverse genetic backgroundsTheor. Appl. Genet.101388399CrossRefGoogle Scholar
  15. Gelvin, S.B. 1998Multigene plant transformation: more is better!Nat. Biotechnol.1610091010CrossRefPubMedGoogle Scholar
  16. Hadi, M.Z., McMullen, M.D., Finger, J.J. 1996Transformation of 12 different plasmids into soybean via particle bombardmentPlant Cell Rep.15500505Google Scholar
  17. Hammond, S.M., Caudy, A.A., Hannon, G.J. 2001Post-transcriptional silencing by double stranded RNANature Rev. Genet.2110119CrossRefPubMedGoogle Scholar
  18. Huang, C.Y., Ayliffe, M.A., Timmis, J.N. 2004Simple and complex nuclear loci created by newly transferred chloroplast DNA in tobaccoProc. Natl. Acad. Sci. USA10197109715PubMedGoogle Scholar
  19. Jackson, S.A., Zhang, P., Chen, W.P., Phillips, R.L., Friebe, B., Muthukrishnan, S., Gill, B.S. 2001High-resolution structural analysis of biolistic transgene integration into the genome of wheatTheor. Appl. Genet.1035662CrossRefGoogle Scholar
  20. Jefferson, R.A., Kavanagh, T.A., Beven, M.W. 1987GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plantsEMBO J.639013907PubMedGoogle Scholar
  21. Kartzke, S., Saedler, H., Meyer, P. 1990Molecular analysis of transgenic plants derived from transformations of protoplasts at various stages of the cellPlant Sci.676372CrossRefGoogle Scholar
  22. Kohli, A., Leech, M., Vain, P., Laurie, D.A., Christou, P. 1998Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot-spotsProc. Natl. Acad. Sci. USA9572037208CrossRefPubMedGoogle Scholar
  23. Kohli, A., Griffiths, S., Palacios, N., Twyman, R.M., Vain, P., Laurie, D.A., Christou, P. 1999Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombinationPlant J.17591601CrossRefPubMedGoogle Scholar
  24. Kohli, A., Twyman, R.M., Abranches, R., Wegel, E., Shaw, P., Christou, P., Stoger, E. 2003Transgene integration, organization and interaction in plantsPlant Mol. Biol.52247258CrossRefPubMedGoogle Scholar
  25. Li, L., Qu, R., Kochko, A., Fauquet, C., Beachy, R.N. 1993An improved rice transformation system using the biolistic methodPlant Cell Rep.12250255CrossRefGoogle Scholar
  26. Lin, L., Liu, Y.-G., Xu, X., Li, B. 2003Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector systemProc. Natl. Acad. Sci. USA10059625967PubMedGoogle Scholar
  27. Loc, N.T., Tinjuangjun, P., Gatehouse, A.M.R., Christou, P., Gatehouse, J.A. 2002Linear transgene constructs lacking vector backbone sequences generate transgenic rice plants which accumulate higher levels of proteins conferring insect resistanceMol. Breeding9231244Google Scholar
  28. Mehlo, L., Mazithulela, G., Twyman, R.M., Boulton, M.I., Davies, J.W., Christou, P. 2000Structural analysis of transgene rearrangements and effects on expression in transgenic maize plants generated by particle bombardmentMaydica45277287Google Scholar
  29. Ow, D.W., Wood, K.V., Deluca, M., Dewet, J.R., Helinski, D.R., Howel, S.H. 1986Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plantsScience234856859PubMedGoogle Scholar
  30. Pawlowski, W.P., Somers, D.A. 1998Transgenic DNA integrated into the oat genome is frequently interspersed by host DNAProc. Natl. Acad. Sci. USA951210612110CrossRefPubMedGoogle Scholar
  31. Peng, J., Wen, F., Lister, R.L., Hodges, T.K. 1995Inheritance of gusA and neo genes in transgenic ricePlant Mol. Biol.2791104CrossRefPubMedGoogle Scholar
  32. Perucho, M., Hanahan, D., Lipsich, L., Wigler, M. 1980Isolation of the chicken thymidine kinase gene by plasmid rescueNature285207210CrossRefPubMedGoogle Scholar
  33. Plasterk, R.H.A., Ketting, R.F. 2000The silence of the genesCurr. Opin. Genet. Dev.10562567CrossRefPubMedGoogle Scholar
  34. Potter, H., Weir, L., Leder, P. 1984Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporationProc. Natl. Acad. Sci. USA8171617165PubMedGoogle Scholar
  35. Rathor, K.S., Chowdhury, V.K., Hodges, T.K. 1993Use of baras a selectable marker gene and for the production of herbicide-resistant rice plants from protoplastsPlant Mol. Biol.21871884Google Scholar
  36. Sambrook, J., Russell, D.W. 2000Molecular Cloning: A Laboratory ManualCold Spring Harbor Laboratory PressCold Spring Harbor, NYGoogle Scholar
  37. Schocher, R.J., Shillito, R.D., Saul, M.W., Paszkowski, J., Potrykus, I. 1986Co-transformation of unlinked foreign genes into plants by direct gene transferBio/Technology410931096CrossRefGoogle Scholar
  38. Slater, A., Scott, N., Fowler, M. 2003Plant Biotechnology: The Genetic Manipulation of PlantsOxford University PressOxford, UKGoogle Scholar
  39. Smith, N., Kilpatrick, J.B., Whitelam, G.C. 2001Superfluous transgene integration in plantsCrit. Rev. Plant Sci.20215249Google Scholar
  40. Sudhakar, D., Duc, L.T., Bong, B.B., Tinjuangjun, P., Maqbool, S.B., Valdez, M., Jefferson, R., Christou, P. 1998An efficient rice transformation system utilizing mature seed-derived explants and a portableinexpensive particle bombardment deviceTransgenic Res.7289294Google Scholar
  41. Svitashev, S.K., Somers, D.A. 2001Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardmentGenome44691697CrossRefPubMedGoogle Scholar
  42. Tang, K., Tinjuangjun, P., Xu, Y., Sun, X., Gatehouse, J.A., Ronald, P.C., Qi, H., Lu, X., Christou, P., Kohli, A. 1999Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pestsPlanta208552563CrossRefGoogle Scholar
  43. Twyman, R.M., Christou, P. 2004Plant transformation technology – particle bombardmentChristou, P.Klee, H. eds. Handbook of Plant BiotechnologyJohn Wiley & SonsNY263290Google Scholar
  44. Twyman, R.M., Stoger, E., Kohli, A., Christou, P. 2002Foreign DNA: Integration and expression in transgenic plantsSetlow, J.K. eds. Genetic Engineering Principles and PracticePlenum PressNY107136Google Scholar
  45. Voinnet, O. 2002RNA silencing: small RNAs as ubiquitous regulators of gene expressionCurr. Opin. Plant. Biol.5444451CrossRefPubMedGoogle Scholar
  46. Wakita, Y., Otani, M., Iba, K., Shimada, T. 1998Cointegration, coexpression and cosegregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardmentGenes Genet. Sys.73219226Google Scholar
  47. Widholm, J.M. 1972Anthranilate synthase from 5-methyltryptophan-susceptible and resistant cultured Daucus carota cellsBiochim. Biophys. Acta2794857PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Pawan K. Agrawal
    • 1
  • Ajay Kohli
    • 2
  • Richard M. Twyman
    • 3
  • Paul Christou
    • 4
  1. 1.Central Rice Research InstituteCuttackIndia
  2. 2.Institute for Research on Environment and Sustainability, School of BiologyUniversity of Newcastle-upon-TyneNewcastle-upon-TyneUK
  3. 3.Department of BiologyUniversity of YorkHeslingtonUK
  4. 4.Department de Produccio Vegetal i Ciencia ForestalICREA, Universitat de LleidaLLEIDASpain

Personalised recommendations