Molecular Breeding

, Volume 15, Issue 4, pp 367–381 | Cite as

Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane

  • N. Reffay
  • P. A. Jackson
  • K. S. Aitken
  • J. -Y. Hoarau
  • A. D’Hont
  • P. Besse
  • C. L. McIntyre
Article

Abstract

Mandalay is an important Saccharum spontaneum clone used historically in Australian sugarcane breeding programs, and has given rise to many valuable cultivars. In order to better understand the genetic contribution of Mandalay to Australian varieties and elite parental material, a combined pedigree and quantitative trait loci (QTL) mapping approach was undertaken. A genetic map containing 400 single-dose markers was constructed for the Australian sugarcane clone MQ77340, one parent of an Australian sugarcane population (Q117 × MQ77340), using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. This cultivar was selected because it is a direct descendent of Mandalay; its grandparents are Korpi, a S. officinarum clone, and Mandalay. The 400 markers were scattered onto 101 linkage groups (LGs) with an estimated map length of 3582 cM. The ancestral origin of all of the markers was determined with approximately 25% of the markers shown to originate from Mandalay, and a similar percentage from Korpi. Of the 101 LGs, 65 contained markers originating from Mandalay and/or Korpi. QTL analysis was undertaken using the map and 3 years of field data for three sugar-related traits (pol, brix, and CCS) and using single year field data for fibre, stalk weight and cane and sugar yield. Markers from both Mandalay and Korpi were found to be associated with both positive and negative effects on all of the traits analysed.

Keywords

Mapping Pedigree QTL S. spontaneum Sugarcane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arceneaux, G. 1967Cultivated sugarcanes of the world and their botanical derivationProc. Int. Soc. Sugarcane Technol.6116128Google Scholar
  2. Berding, N., Moore, P.H., Smith, G.R. 2000

    Advances in breeding technology for sugarcane

    Keating, B.A.Wilson, J. eds. Intensive Sugarcane Production: Meeting the Challenges Beyond 2000CAB InternationalUK141156
    Google Scholar
  3. Bremer, G. 1922Een cytologisch onderzoek van eenige soorten en soortsbastaarden van het geslacht SaccharumArch. Suikerindust. Nederl. Indie. Meded. Proefsta. Java Suikerindust 1112.192497148English translation in Genetica 273326Google Scholar
  4. Bremer, G. 1961Problems in breeding and cytology of sugarcaneEuphytica105978CrossRefGoogle Scholar
  5. Brondani, C., Rangel, P.H.N., Brondani, R.P.V., Ferreira, M.E. 2002QTL mapping and introgression of yield-related traits from Oryza glumaepatula into cultivated rice (Oryza sativa) using microsatellite markersTheor. Appl. Genet.10411921203CrossRefPubMedGoogle Scholar
  6. Bureau of Sugar Experiment Stations.1984The Standard Laboratory Manual for Australian Sugar Milling. Volume 1. Principles and PracticesBSESBrisbaneAustraliaGoogle Scholar
  7. Concibido, V.C., Lavallee, B., Mclaird, P., Pineda, N., Meyer, J., Hummel, L., Yang, J., Wu, K., Delanney, X. 2003Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivarsTheor. Appl. Genet.106575582PubMedGoogle Scholar
  8. Cordeiro, G.M., Taylor, G.O., Henry, R.J. 2000Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid speciesPlant Sci.155161168CrossRefPubMedGoogle Scholar
  9. D’Hont, A., Grivet, L., Feldman, P., Rao, S., Berding, N., Lanaud, C., Glaszmann, J.-C. 1996Characterisation of the double genome structure of modern cultivars (Saccharum spp.) by molecular cytogenticsMol. Gen. Genet.250405413CrossRefPubMedGoogle Scholar
  10. Fahr, S., Messmer, M.M., Melchinger, A.E., Lee, M., Woodman, L. 1993Graphical genotype of maize inbred B86 revealed by RFLPsPlant Breed.1102934Google Scholar
  11. Grivet, L., Arruda, P. 2001Sugarcane genomics: depicting the complex genome of an important tropical cropPlant Biol.5122127Google Scholar
  12. Grivet, L., D’Hont, A., Roques, D., Feldmann, P., Lanaud, C., Glaszmann, J.-C. 1996RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybridGenetics1429871000PubMedGoogle Scholar
  13. Hoarau, J.Y., Grivet, L., Offmann, B., Raboin, L.-M., Diorflar, J.-P., Payet, J., Hellmann, M., D’Hont, A., Glaszmann, J.-C. 2002Genetic dissection of a modern cultivar (Saccharum spp.). II. Detection of QTLs for yield componentsTheor. Appl. Genet.10510271037CrossRefPubMedGoogle Scholar
  14. Hoarau, J.Y., Offmann, B., D’Hont, A., Risterucci, A.-M., Roques, D., Glaszmann, J.-C., Grivet, L. 2001Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markersTheor. Appl. Genet.1038497CrossRefGoogle Scholar
  15. Hosington, D.A. 1992Laboratory ProtocolsCIMMYT Applied Molecular Genetics LaboratoryMexicoD.F. CIMMYTGoogle Scholar
  16. Huckett, B.I., Botha, F.C. 1995Stability and potential use of RADP markers in sugarcane genealogyEuphytica86117125CrossRefGoogle Scholar
  17. Jannoo, N., Grivet, L., Seguin, M., Paulet, F., Domainge, R., Rao, P.S., Dookun, A., D’Hont, A., Glaszmann, J.C. 1999Molecular investigation of the genetic base of sugarcane cultivarsTheor. Appl. Genet.9910531060CrossRefGoogle Scholar
  18. Jordan, D.R. 1998Application of molecular markers to Australian sorghum breeding programsUniversity of QueenslandBrisbaneAustraliaPhD ThesisGoogle Scholar
  19. Katsunori, T., Yomishimichi, F., Masahiro, H., Shingo, O., Ikuo, A., Tadashi, Y. 1999Mapping of the Grh1 locus for green rice leafhopper resistance in rice using RFLP markersBreed. Sci.491114Google Scholar
  20. Lander, E.S., Green, P., Abrahamson, J., Daly, M.J., Lincoln, S.E., Newburg, L. 1987MAPMAKER: an interactive computer package for construction primary genetic linkage maps of experimental and natural populationsGenomics1174181CrossRefPubMedGoogle Scholar
  21. Lu, Y.H., D’Hont, A., Paulet, F., Grivet, L., Arnaud, M., Glaszmann, J.C. 1994Molecular diversity and genome structure in modern sugarcane varietiesEuphytica78217226CrossRefGoogle Scholar
  22. Ma, J.X., Zhou, R.H., Dong, Y.S., Wang, L.F., Wang, X.M., Jia, J.Z. 2001Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markersEuphytica120219226CrossRefGoogle Scholar
  23. Meer J.M., Manly K.F. and Cudmore R.H. 2002. Software for genetic mapping of Mendelian markers and quantitative traits loci. Roswell Cancer Park Institute. Google Scholar
  24. Ming, R., Wang, Y.-W., Draye, X., Moore, P.H., Irvine, J.E., Paterson, A.H. 2002Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcaneTheor. Appl. Genet.105332345CrossRefPubMedGoogle Scholar
  25. Piperidis, G., D’Hont, A. 2001Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH)Int. Soc. Sugarcane Technol. Cong.11565Google Scholar
  26. Roach, B.T. 1969Evaluation and breeding use of sugarcane germplasmProc. Int. Soc. Sugarcane Technol.19492501Google Scholar
  27. Rossi, M., Araujo, P., Paulet, F., Garsmeur, O., Dias, V., Hui, C., Van Sluys, M.A., D’Hont, A. 2003Genome distribution and characterization of EST derived sugarcane resistance gene analogsMol. Gen. Genet.269406419Google Scholar
  28. Symington, W.M. 1989Commercial potential of Macknade nobilisations for yieldsugar content and stress toleranceProc. Int. Soc. Sugarcane Technol.484853Google Scholar
  29. Tanksley, S.D., Grandillo, S., Fulton, T.M., Zamir, D., Eshed, Y., Petiard, V., Lopez, J., Beck-Bunn, T. 1996Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its relative L. pimpinellifoliumTheor. Appl. Genet.92213224CrossRefGoogle Scholar
  30. Tanksley, S.D., Nelson, J.C. 1996Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs form unadapted germplasm into elite breeding linesTheor. Appl. Genet.92191203CrossRefGoogle Scholar
  31. Vos, P., Hogers, R., Bleeker, M., Reijans, M., der Lee, T., Hornes, M., Fritjers, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. 1995AFLP: a new technique for DNA fingerprintingNucleic Acid Res.2344074414PubMedGoogle Scholar
  32. Xu, M.L., Melchinger, A.E., Xia, X.C., Lubberstedt, T. 1999High resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markersMol. Gen. Genet.261574581CrossRefPubMedGoogle Scholar
  33. Yousef, G.G., Juvik, J.A. 2001Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solidsTheor. Appl. Genet.10310221027CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • N. Reffay
    • 1
    • 2
  • P. A. Jackson
    • 3
  • K. S. Aitken
    • 1
  • J. -Y. Hoarau
    • 4
  • A. D’Hont
    • 5
  • P. Besse
    • 2
  • C. L. McIntyre
    • 1
  1. 1.CSIRO Plant IndustryQueensland Bioscience PrecinctSt. LuciaAustralia
  2. 2.Université de la RéunionSt DenisFrance
  3. 3.CSIRO Plant IndustryDavies LaboratoryTownsvilleAustralia
  4. 4.CERF Ile de la RéunionFrance
  5. 5.CIRADMontpellierFrance

Personalised recommendations