Advertisement

Molecular Breeding

, Volume 16, Issue 1, pp 1–10 | Cite as

Molecular Tagging and Selection for Sugar Type in Carrot Roots Using Co-dominant, PCR-based Markers

  • Yuan-Yeu Yau
  • Kathlyn Santos
  • Philipp SimonEmail author
Article

Abstract

Carrot storage roots accumulate free sugars. The type of sugar accumulated is conditioned by the Rs locus so that typical carrot roots (Rs/-) accumulate predominantly glucose and fructose while rs/rs plants accumulate predominantly sucrose. We recently have found rs/rs plants in one inbred line that harbor a naturally occurring insertion sequence of 2.5 kb integrated into the first intron region of acid soluble invertase isozyme II. Using these facts, three primers were designed to differentiate Rs/Rs, Rs/rs and rs/rs carrot plants with simple PCR amplification. Co-dominant, PCR-based markers for acid soluble invertase isozyme II allowed genotyping of the Rs locus in 1-week-old carrot seedlings whereas mature carrot roots were needed to make this evaluation previously, and homozygous dominant plants could not be differentiated from heterozygotes without lengthy progeny testing. Marker-assisted evaluation and selection of carrot root sugar type were exercised in segregating families of diverse background and complete accuracy in predicting sugar type was realized in subsequent generations to further confirm that acid soluble invertase isozyme II conditions the Rs locus. These PCR-based markers will be useful in carrot breeding programs screening for this trait in segregating populations, for studying the distribution and origins of this trait in domestic and wild carrots, and for identifying seed mixtures as low as 10% Rs/- or 1% rs/rs.

Keywords

Carrot Insertion element Invertase Marker-assisted selection SCAR marker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, W.H., Taliercio, E.W., Chourey, P.S. 1996The Miniature 1 seed locus of maize encodes a cell-wall invertase required for normal development of endosperm and maternal cells in the pedicelPlant Cell8971973CrossRefPubMedGoogle Scholar
  2. Eschrich, W. 1980Free space invertaseits possible role in phloem unloadingBer. Dtsch. Bot. Ges93363378Google Scholar
  3. Freeman, R.E., Simon, P.W. 1983Evidence for simple genetic control of sugar type in carrot (Daucus carota L.)J. Am. Soc. Hortic. Sci1085054Google Scholar
  4. Fridman, E., Pleban, T., Zamir, D. 2000A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase geneProc. Nat. Acad. Sci. USA2547184723CrossRefGoogle Scholar
  5. Hanson, W.D. 1959Minimum family sizes for planning of genetic experimentsAgron. J51711715Google Scholar
  6. Klann, E.M., Chetelat, R.T., Bennett, A.B. 1993Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruitPlant Physiol103863870PubMedGoogle Scholar
  7. Lauriere, C., Lauriere, M., Sturm, A., Faye, L., Chrispeels, M.J. 1988Characterization of β-fructosidasean extracellular glycoprotein of carrot cellsBiochimie7014831491CrossRefPubMedGoogle Scholar
  8. Lee, S.H., Sturm, A. 1996Purification and characterization of neutral and alkaline invertase from carrotPlant Physiol11215131522CrossRefPubMedGoogle Scholar
  9. Munger, H.M. 1987Adaptation and breeding of vegetable crops for improved human nutritionQuebedeaux, B.Bliss, F.A. eds. Horticulture and Human HealthPrentice HallEnglewood Cliffs, NJ177184Google Scholar
  10. Murray, M., Thompson, W. 1980Rapid isolation of high-molecular weight plant DNANucleic Acids Res843214325PubMedGoogle Scholar
  11. Oȁ9Hare, S.K., Locascio, S., Forbes, R., White, J.M., Hensel, D., Shumaker, J., Dangler, J.M. 1983Root crops and their biomass potential in FloridaProc. Soil Crop Sci. Soc. Florida421317Google Scholar
  12. Santos, C.A., Simon, P.W. 2002QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot rootsMolec. Genet. Genomics268122129CrossRefGoogle Scholar
  13. Simon, P.W. 2000Domestication, historical developmentand modern breeding of carrotPlant Breed. Rev19157190Google Scholar
  14. Simon, P.W., Freeman, R.E. 1985A rapid method for screening reducing sugar in carrot rootsHortScience20133134Google Scholar
  15. Simon, P.W., Peterson, C.E., Gabelman, W.H. 1990B493 and B9304, carrot inbreds for use in breeding, genetics, and tissue cultureHortScience25815Google Scholar
  16. Simon, P.W., Peterson, C.E., Lindsay, R.C. 1980Genetic and environmental influences on carrot flavorJ. Am. Soc. Hortic. Sci105416420Google Scholar
  17. Simon, P.W., Rubatzky, V.E., Bassett, M.J., Strandberg, J.O., White, J.M. 1997B7262, purple carrot inbredHortScience32146147Google Scholar
  18. Stommel, J.R., Haynes, K.G. 1993Genetic control of fruit sugar accumulation in a Lycopersicon esculentum × L. hirsutum crossJ. Am. Soc. Hortic. Sci118859863Google Scholar
  19. Stommel, J.R., Simon, P.W. 1989Phenotypic recurrent selection and heritability estimates for total dissolved solids and sugar type in carrotJ. Am. Soc. Hortic. Sci114695699Google Scholar
  20. Sturm, A. 1996Molecular characterization and functional analysis of sucrose-cleaving enzymes in carrot (Daucus carota L.)J. Exp. Bot4711871192Google Scholar
  21. Sturm, A., Chrispeels, M.J. 1990cDNA cloning of carrot extracellular β- fructosidase and its expression in response to wounding and bacterial infectionPlant Cell211071119CrossRefPubMedGoogle Scholar
  22. Sturm, A., Sebkova, V., Lorenz, K., Hardegger, M., Lienhard, S., Unger, C. 1995Development- and organ- specific expression of the genes for sucrose synthase and three isozymes of acid β-fructofuranosidase in carrotPlanta195601610CrossRefGoogle Scholar
  23. Unger, C., Hardegger, M., Liehard, S., Sturm, A. 1994cDNA cloning of carrot (Daucus carota) soluble acid β-furctofuranosidases and comparison with the cell wall isoenzymePlant Physiol10413511357CrossRefPubMedGoogle Scholar
  24. Unger, C., Hofsteenge, J., Sturm, A. 1992Purification and characterization of a soluble β-fructofuranosidase from Daucus carotaEur. J. Biochem204915921CrossRefPubMedGoogle Scholar
  25. Vivek, B.S., Simon, P.W. 1999Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). TheorAppl. Genet995864CrossRefGoogle Scholar
  26. Yau, Y.Y., Simon, P.W. 2003A 2.5-kb Insert eliminates acid soluble invertase isozyme II transcript in a carrot (Daucus carota L.) roots, causing high sucrose accumulationPlant Mol. Biol53151162CrossRefPubMedGoogle Scholar
  27. Zhang, L., Cohn, N.S., Mitchell, J.P. 1996Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloemPlant Physiol11211111117PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.USDA-ARS Vegetable Research Crops Unit and Department of HorticultureUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of BiologyUniversity of Puerto Rico-Mayaguez CampusMayaguezPR

Personalised recommendations