Molecular Breeding

, Volume 15, Issue 4, pp 329–337 | Cite as

Microsatellite tagging of the leaf rust resistance gene Lr16 on wheat chromosome 2BSc

  • C. A. McCartney
  • D. J. Somers
  • B. D. McCallum
  • J. Thomas
  • D. G. Humphreys
  • J. G. Menzies
  • P. D. Brown
Article

Abstract

Leaf rust, caused by Puccinia triticina, is one of the most damaging diseases of wheat worldwide. Lr16 is a widely deployed leaf rust resistance gene effective at the seedling stage. Although virulence to Lr16 exists in the Canadian P. triticina population, Lr16 provides a level of partial resistance in the field. The primary objective of this study was to identify markers linked to Lr16 that are suitable for marker-assisted selection (MAS). Lr16 was tagged with microsatellite markers on the distal end of chromosome 2BS in three mapping populations. Seven microsatellite loci mapped within 10 cM of Lr16, with the map distances varying among populations. Xwmc764 was the closest microsatellite locus to Lr16, and mapped 1, 9, and 3 cM away in the RL4452/AC Domain, BW278/AC Foremost, and HY644/McKenzie mapping populations, respectively. Lr16 was the terminal locus mapped in all three populations. Xwmc764, Xgwm210, and Xwmc661 were the most suitable markers for selection of Lr16 because they had simple PCR profiles, numerous alleles, high polymorphism information content (PIC), and were tightly linked to Lr16. Twenty-eight spring wheat lines were evaluated for leaf rust reaction with the P. triticina virulence phenotypes MBDS, MBRJ, and MGBJ, and analyzed with five microsatellite markers tightly linked to Lr16. There was good agreement between leaf rust infection type (IT) data and the microsatellite allele data. Microsatellite markers were useful for postulating Lr16 in wheat lines with multiple leaf rust resistance genes.

Keywords

Lr16 Mapping Microsatellite markers Puccinia triticina Triticum aestivum Wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anikster, Y., Bushnell, W.R., Eilam, T., Manisterski, J., Roelfs, A.P. 1997Puccinia recondita causing leaf rust on cultivated wheats, wild wheats, and ryeCan. J. Bot.7520822096Google Scholar
  2. Botstein, D., White, R.L., Skolnick, M., Davis, R.W. 1980Construction of a genetic linkage map in man using restriction fragment length polymorphismsAm. J. Hum. Genet.32314331PubMedGoogle Scholar
  3. Browder, L.E. 1973Probable genotype of some Triticum aestivum agent derivatives for reaction to Puccinia recondita f. sp. triticiCrop. Sci.13203206Google Scholar
  4. Dyck, P.L., Kerber, E.R. 1971Chromosome location of three genes for leaf rust resistance in common wheatCan. J. Genet. Cytol.13480483Google Scholar
  5. Fedak, G., Burvill, M., Voldeng, H. 1997A comparison of anther culture and maize pollination for haploid production in wheatJ. Appl. Genet.38407414Google Scholar
  6. German, S.E., Kolmer, J.A. 1992Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheatTheor. Appl. Genet.8497105CrossRefGoogle Scholar
  7. Huang, L., Brooks, S.A., Li, W., Fellers, J.P., Trick, H.N., Gill, B.S. 2003Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploidy genome of bread wheatGenetics164655664PubMedGoogle Scholar
  8. Kolmer, J.A. 1989Virulence and race dynamics of Puccinia recondita f. sp. tritici in Canada during 19561987Phytopathology79349356Google Scholar
  9. Kolmer, J.A. 1996Genetics of resistance to wheat leaf rustAnnu. Rev. Phytopathol.34435455CrossRefPubMedGoogle Scholar
  10. Kolmer, J.A. 2001Physiological specialization of Puccinia triticina in Canada in 1998Plant Dis.85155158Google Scholar
  11. Kolmer, J.A., Liu, J.Q. 2002Inheritance of leaf rust resistance in the wheat cultivars AC Majestic, AC Splendorand AC KarmaCan. J. Plant Pathol.24327331Google Scholar
  12. Liu, J.Q., Kolmer, J.A. 1997aInheritance of leaf rust resistance in wheat cultivars Grandin and CDC TealPlant Dis.81505508Google Scholar
  13. Liu, J.Q., Kolmer, J.A. 1997bGenetics of leaf rust resistance in Canadian spring wheats AC Domain and AC TaberPlant Dis.81757760Google Scholar
  14. Loegering, W.Q., McIntosh, R.A., Burton, C.H. 1971Computer analysis of disease data to derive hypothetical genotypes for reaction of host varieties to pathogensCan. J. Genet. Cytol.13742748Google Scholar
  15. Long, D.L., Kolmer, J.A. 1989A North American System of Nomenclature for Puccinia recondita f. sp. triticiPhytopathology79525529Google Scholar
  16. McCallum, B.D., Seto-Goh, P. 2003Physiological specialization of wheat leaf rust [Puccinia triticina] in Canada in 2000Can. J. Plant Pathol.259197Google Scholar
  17. McCallum, B.D., Seto-Goh, P. 2004Physiological specialization of Puccinia triticinathe cause of wheat leaf rustin Canada in 2001Can. J. Plant Pathol.26109120Google Scholar
  18. McIntosh, R.A., Luig, N.H. 1973Linkage of genes for reaction to Puccinia graminis f. sp. triticiP. recondita in Selkirk wheat and related cultivarsAust. J. Biol. Sci.2611451152Google Scholar
  19. McIntosh, R.A., Wellings, C.R., Park, R.F. 1995Wheat Rusts: An Atlas of Resistance GenesKluwer Academic PublishersDordrechtThe Netherlands200Google Scholar
  20. McIntosh R.A., Hart G.E., Devos K.M., Gale M.D. and Rogers W.J. 1998. Catalogue of Gene Symbols for Wheat. Proc. 9th Int. Wheat Genetics Symposium27 August 1998 Saskatoon, Saskatchewan, Canada.Google Scholar
  21. McVey, D.V., Long, D.L. 1993Genes for leaf rust resistance in hard red winter wheat cultivars and parental linesCrop Sci.3313731381Google Scholar
  22. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998A microsatellite map of wheatGenetics14920072023PubMedGoogle Scholar
  23. Samborski, D.J. 1985

    Wheat leaf rust

    Roelfs, A.P.Bushnell, W.R. eds. The Cereal RustsAcademic PressNew York3959Vol.2
    Google Scholar
  24. Samborski, D.J., Dyck, P.L. 1968Inheritance of virulence in wheat leaf rust on standard differential varietiesCan. J. Genet. Cytol.102432Google Scholar
  25. Samborski, D.J., Dyck, P.L. 1982Enhancement of resistance to Puccinia recondita by interactions of resistance genes in wheatCan. J. Plant Pathol.4152156Google Scholar
  26. Schafer, J.F., Long, D.L. 1988Relations of races and virulences of Puccinia recondita f. sp. tritici to wheat cultivars and areasPlant Dis.722527Google Scholar
  27. Schuelke, M. 2000An economic method for the fluorescent labeling of PCR fragmentsNat. Biotechnol.18233234CrossRefPubMedGoogle Scholar
  28. Singh, R.P., Chen, W.Q., He, Z.H. 1999Leaf rust resistance of spring, facultativeand winter wheat cultivars from ChinaPlant Dis.83644651Google Scholar
  29. Singh, R.P., Rajaram, S. 1991Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivarsCrop Sci.3114721479Google Scholar
  30. Somers D.J., Isaac P. and Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L).. Theor. Appl. Genet. eFIRST date: 29 July 2004.Google Scholar
  31. Stam, P. 1993Construction of integrated genetic linkage maps by means of a new computer package: JoinMapPlant J.3739744Google Scholar
  32. Strickberger, M.W. 1985Genetics, 3rd edMacmillan Publishing CompanyNew YorkGoogle Scholar
  33. Talbert, L.E., Blake, N.K., Chee, P.W., Blake, T.K., Magyar, G.M. 1994Evaluation of ‘sequence-tagged-site’ PCR products as molecular markers in wheatTheor. Appl. Genet.87789794CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • C. A. McCartney
    • 1
  • D. J. Somers
    • 1
  • B. D. McCallum
    • 1
  • J. Thomas
    • 1
  • D. G. Humphreys
    • 1
  • J. G. Menzies
    • 1
  • P. D. Brown
    • 1
  1. 1.Agriculture and Agri-Food CanadaCereal Research CentreWinnipegCanada

Personalised recommendations