Molecular Breeding

, Volume 15, Issue 3, pp 257–269 | Cite as

Molecular genetic mapping of a high-lysine mutant gene (opaque-16) and the double recessive effect with opaque-2 in maize



The lysin content in maize endosperm protein is considered to be one of the most important traits for determining the nutritional quality of food and feed. Improving the protein quality of the maize kernel depends principally on finding a mutant with a higher lysine content. Two high-lysine mutant lines with opaque endosperm, QCL3024 and QCL3021, were isolated from a self-cross population derived from Robertson’s Mutator stocks. The gene controlling this mutation is temporarily termed opaque-16 (o16). In order to illuminate the genetic locus and effect of the o16 gene, two F2:3 populations, one developed from a cross between QCL3024 and QCL3010 (a wild type line) and another from a cross between Qi205 (opaque-2 line) and QCL3021, were created, and F3 seeds from the F2 plants in the two populations were evaluated for lysine content. The distributions of lysine content and tests for their normality indicate that the lysine content in the two populations is regulated by the major gene of o16 and genes of o2 and o16, respectively. Based on two data sets of the linkage maps of the F2 plant marker genotypes and the lysine content of F3 seeds originating from the two F2:3 populations, the o16 gene was located within 5 cM, at either 3 or 2.2 cM from umc1141 in the interval between umc1121 and umc1141 on the long arm of chromosome 8, depending on the recombination rate in the two populations as determined by composite interval mapping. According to the data of the F2:3 population constructed from the o2 and o16 lines, the double recessive mutant effect was analyzed. The average lysine content of the F3o2o2o16o16’ families identified by the umc1066 and umc1141 markers was approximately 30% higher than that of the F3o2o2 and ‘‘o16o16’ families, respectively. The lysine content of seven F3 families among nine F3 double recessive mutant families showed different increments, with an average increase of some 6% compared with that of the maternal o2 line. The potential application of the o16 mutant for maize high-lysine breeding may be to combine it with the o2 mutant bearing modifier genes, thus obtaining a mutant with much higher lysine content. For the purpose of pyramiding the o16 with o2 genes, the availability of closely linked markers of the o16 and o2 loci will facilitate marker-assisted selection and greatly reduce breeding time and effort.


Gene pyramiding High-lysine mutant Maize opaque-16 opaque-2 QTL mapping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajmone-Marsan, P., Salamini, F., Franceschini, P., Monfredini, G., Motto, M. 1992The b-32 protein is not encoded by the opaque-6 locusMaize Genet. Coop. Newslett.6620Google Scholar
  2. Bennetzen, J.L., Chandler, V.L., Schnable, P. 2001National science foundation-sponsored workshop report. Maize genome sequencing projectPlant Physiol.12715721578CrossRefPubMedGoogle Scholar
  3. Cordova, H. 2000Quality protein maize: improve nutrition and livelihoods for the poorCIMMYT Maize Res. Highl.1999--20002731Google Scholar
  4. Dannenhoffer, J.M., Bostwick, D.E., Or, E., Larkins, B.A. 1995opaque-15a maize mutation with properties of a defective opaque-2 modifierProc. Natl. Acad. Sci. USA9219311935PubMedGoogle Scholar
  5. England, D.J., Neuffer, M.G. 1987Chromosome 8 linkage studiesMaize Genet. Coop. Newslett.6151Google Scholar
  6. Gavazzi, G., Nava-Racchi, M., Tonelli, C. 1975A mutation causing proline requirement in Zea maysTheor. Appl. Genet.46339345CrossRefGoogle Scholar
  7. Habben, J.E., Kirleis, A.W., Larkins, B.A. 1993The origin of lysine-containing proteins in opaque-2 endospermPlant Mol. Biol.23825838CrossRefPubMedGoogle Scholar
  8. Hui, D.F., Jiang, C.J. 1996A Practical Tutorial for SAS SoftwareBei-Hang University PressBeijing174(in Chinese).Google Scholar
  9. Kearsey, M.J., Farquhar, A.G. 1998QTL analysis in plants: where are we now?Heredity80137142CrossRefPubMedGoogle Scholar
  10. Kosambi, D.D. 1944The estimation of the map from the recombination valuesAnn. Eugen.12172175Google Scholar
  11. Lander, E.S., Botstein, D. 1989Mapping Mendelian factors underlying quantitative traits using RFLP linkage mapsGenetics121185199PubMedGoogle Scholar
  12. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daley, M.J., Lincoln, S.E., Etoh, T. 1987MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populationsGenomics1174181CrossRefPubMedGoogle Scholar
  13. Lincoln, S.E., Daly, M.J., Lander, E.S. 1993Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference ManualWhitehead InstituteCambridgeMA149Whitehead Institute for Biomedical Research Technical Report. 3rd edn.Google Scholar
  14. Liu, R.H. 2003Dissection of Biomass Heterosis for Interspecific Oilseed Hybrid at Molecular Marker Level and Identification of Local Responsive Genes in Brassica napus for SclerotinaHuazhong Agricultural UniversityWuhan, ChinaPhD thesis, (in Chinese).Google Scholar
  15. Lui, R.H., Meng, J.L. 2003Map draw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage dataHereditas (Beijing)25317321 (in Chinese)Google Scholar
  16. Mains, E.B. 1949Heritable characters in maize. Linkage of a factor for shrunken endosperm with the a1 factor for aleurone colorJ. Hered.402124Google Scholar
  17. Manzocchi, L.A., Tonelli, C., Gavazzi, G., Di Fonzo, N., Soave, C. 1986Genetic relationship between o6pro-1 mutants in maizeTheor. Appl. Genet.72778781CrossRefGoogle Scholar
  18. McWhirter, K.S. 1971A floury endospermhigh lysine locus on chromosome 10Maize Genet. Coop. Newslett.45184Google Scholar
  19. Mertz, E.T. 1992

    Discovery of high lysine high tryptophan cereals

    Mert, E.T. eds. Quality Protein MaizeAmerican Association of Cereal ChemistrySt. Paul, MN18
    Google Scholar
  20. Mertz, E.T., Bates, L.S., Nelson, O.E. 1964Mutant gene that changes protein composition and increases lysine content of maize endospermScience145279280PubMedGoogle Scholar
  21. Motto, M., Di Fonzo, N., Hartings, H., Maddaloni, M., Salamini, F., Soave, C., Thompson, R.D. 1989Regulatory genes affecting maize storage protein synthesisOxf. Surv. Plant Mol. Cell Biol.687114Google Scholar
  22. Nelson, O.E.,Jr. 1976The location of fl3 on chromosome 8Maize Genet. Coop. Newslett.50114Google Scholar
  23. Nelson, O.E.,Jr. 1979More precise linkage data on fl3Maize Genet. Coop. Newslett.5356Google Scholar
  24. Nelson, O.E.,Jr. 1981The mutations opaque-9 through opaque-13Maize Genet. Coop. Newslett.5568Google Scholar
  25. Nelson, O.E., Mertz, E.T., Bates, L.S. 1965Second mutant gene affecting the amino acid pattern of maize endosperm proteinsScience15014691470Google Scholar
  26. Neuffer, M.G. 1985Chromosome 8, short and long armsMaize Genet. Coop. Newslett.59109Google Scholar
  27. Neuffer, M.G., Coe, E.H., Wessler, S.R. 1997Mutants of MaizeCold Spring Harbor LaboratoryNew York1468Google Scholar
  28. Neuffer, M.G., England, D.J. 1984Location of BifClt*-985pro on chromosome 8Maize Genet. Coop. Newslett.587778Google Scholar
  29. Neuffer, M.G., England, D.J. 1994bif1-pro1-lg4 linkage on chromosome 8Maize Genet. Coop. Newslett.682728Google Scholar
  30. Neuffer, M.G., England, D.J. 1995Induced mutations with confirmed locationsMaize Genet. Coop. Newslett.694346Google Scholar
  31. Neuffer, M.G., Sheridan, W.F. 1980Defective kernel mutants of maize. I. Genetic and lethality studiesGenetics95929944Google Scholar
  32. Paulis, J., Bietz, J.A., Bogyo, T.P., Darrah, L., Zuber, M.S. 1990Expression of alcohol-soluble endosperm proteins in maize single and double mutantsTheor. Appl. Genet.79314320CrossRefGoogle Scholar
  33. Polacco, M., Sanchez-Villeda, H., Coe, E., Columbia, M.O. 2003A consensus genetic map, Inter-mated B73 m Mo17 (IBM) Neighbors, 5718 LociJuly 2003Maize Genet. Coop. Newslett.77137179Google Scholar
  34. Richardson, D.L. 1955Shrunken-floury, a gene affecting protein synthesisMaize Genet. Coop. Newslett.2945Google Scholar
  35. Robertson, D.S. 1978Characterization of a mutator system in maizeMutat. Res.512128Google Scholar
  36. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., Allard, R.W. 1984Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritancechromosomal location, and population dynamicsProc. Natl. Acad. Sci. USA8180148018PubMedGoogle Scholar
  37. Salamini, F., Di Fonzo, N., Fornasari, E., Gentinettta, E., Reggiani, R., Soave, C. 1983MucronateMca dominant gene of maize which interacts with opaque-2 to suppress zein synthesisTheor. Appl. Genet.65123128CrossRefGoogle Scholar
  38. Scanlon, M.J., Stinard, P.S., James, M.G., Myers, A.M., Robertson, D.S. 1994Genetic analysis of 63 mutations affecting maize kernel development isolated from mutator stocksGenetics136281294PubMedGoogle Scholar
  39. Segal, G., Song, R., Messing, J. 2003A new opaque variant of maize by a single dominant RNA-interference-inducing transgeneGenetics165387397PubMedGoogle Scholar
  40. Sheridan, W.F., Chang, M., Neuffer, M.G. 1984The dek mutants new mutants defective in kernel developmentMaize Genet. Coop. Newslett.589899Google Scholar
  41. Sheridan, W.F., Clark, J.K., Chang, M., Neuffer, M.G. 1986The dek mutants new mutants defective in kernel developmentMaize Genet. Coop. Newslett.6064Google Scholar
  42. Sheridan, W.F., Neuffer, M.G. 1980Defective kernel mutants of maize. II. Morphological and embryo culture studiesGenetics95945960Google Scholar
  43. Sheridan, W.F., Neuffer, M.G. 1982Maize developmental mutantsJ. Hered.73318329Google Scholar
  44. Shi, D., Guo, Q., Wang, L., Meng, S., Wen, Y., Guo, Z. 2001The situation of maize quality and development priority of high quality food maize in ChinaJ. Maize Sci.937 (in Chinese)Google Scholar
  45. Soave, C., Tardani, L., Di Fonzo, N., Salamini, F. 1981Zein level in maize endosperm depends on a protein under control of the opaque-2opaque-6 lociCell27403410CrossRefPubMedGoogle Scholar
  46. Soave, C., Viotti, A., Di Fonzo, N., Salamini, F. 1979

    Recent evidence concerning the genetic regulation of zein synthesis

    Leaver, C.J. eds. Genome Organization and Expression in PlantsPlenum PressNew York219226
    Google Scholar
  47. Sprague, G.F. 1929Hetero-fertilization in maizeScience69526527Google Scholar
  48. Sprague, G.F. 1932The nature and extent of heterofertilization in maizeGenetics17358368Google Scholar
  49. Tan, Y.F., Li, J.X., Yu, S.B., Xing, Y.Z., Xu, C.G., Zhang, Q. 1999The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybridShanyou 63Theor. Appl. Genet.99642648CrossRefGoogle Scholar
  50. Teas, H.J., Teas, A.N. 1953Heritable characters in maize: description and linkage of brittle endosperm-2J. Hered.44156158Google Scholar
  51. Tsai, C.Y., Hansel, L.W., Nelson, O.E. 1972A colorimetric method of screening maize seeds for lysine contentCereal Chem.49572579Google Scholar
  52. Villegas, E., Ortega, E., Bauer, R. 1994Chemical Methods Used at CIMMYT for Determing Protein Quality in Cereal Grains. A Manual in Protein Quality LaboratoryInternational Maize and Wheat Improvement CenterMexico City1720Google Scholar
  53. Villegas, E., Vasal, S.K., Bjarnason, M. 1992

    Quality protein maize what is it and how was it developed

    Mertz, E.T. eds. Quality Protein MaizeAmerican Association of Cereal ChemistrySt. Paul2748
    Google Scholar
  54. Wang, M.P. 1998Analyses of Feed Nutrient ContentHuazhong Agricultural University PressWuhan185188(in Chinese).Google Scholar
  55. Wang S., Basten C.J. and Zeng Z.-B. 2002. Windows QTL Cartographer. WinQTLCart V2.0.Google Scholar
  56. Wu, M.C. 2002Nutritional Ingredient Analysis and Sense Evaluation for FoodChinese Agricultural PressBeijing1727(in Chinese).Google Scholar
  57. Wu, W.R., Li, W.M., Tang, D.Z., Lu, H.R., Worland, A.J. 1999Time-related mapping of quantitative trait loci underlying tiller number in riceGenetics151297303PubMedGoogle Scholar
  58. Wu, R., Lou, X.Y., Ma, C.X., Wang, X., Larkins, B.A., Casella, G. 2002aAn improved genetic model generates high-resolution mapping of QTL for protein quality in maize endospermProc. Natl. Acad. Sci. USA991128111286CrossRefGoogle Scholar
  59. Wu, R., Ma, C.X., Gallo-Meagher, M., Littell, R.C., Casella, G. 2002bStatistical methods for dissecting triploid endosperm traits using molecular markers: an autogamous modelGenetics162875892Google Scholar
  60. Yang, W.P. 1998RFLP markers linked with opaque-6 locus of maizeActa Agronom. Sin.243441(in Chinese)Google Scholar
  61. Yang, W.P., SanMiguel, P., Stinard, P., Robertson, D., Bennetzen, J. 1995Opaque mutations from Mutator self populationsMaize Genet. Coop. Newslett.69135136Google Scholar
  62. Zhao, T.N., Chang, Y.L., Wang, W.J. 1982Analyses of Seed Quality (Chemical Composition)Scientific and Technical Press of HeilongjiangHaerbin7681(in Chinese).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular BreedingHuazhong Agricultural UniversityWuhanP.R. China
  2. 2.Institute of Upland Food CropsGuizhou Academy of Agricultural Sciences and Guizhou Center of Maize Engineering TechniquesGuiyangP.R. China

Personalised recommendations