Advertisement

Motivation and Emotion

, Volume 43, Issue 5, pp 803–813 | Cite as

Decoding emotions from nonverbal vocalizations: How much voice signal is enough?

  • Paula Castiajo
  • Ana P. PinheiroEmail author
Original Paper

Abstract

How much acoustic signal is enough for an accurate recognition of nonverbal emotional vocalizations? Using a gating paradigm (7 gates from 100 to 700 ms), the current study probed the effect of stimulus duration on recognition accuracy of emotional vocalizations expressing anger, disgust, fear, amusement, sadness and neutral states. Participants (n = 52) judged the emotional meaning of vocalizations presented at each gate. Increased recognition accuracy was observed from gates 2 to 3 for all types of vocalizations. Neutral vocalizations were identified with the shortest amount of acoustic information relative to all other types of vocalizations. A shorter acoustic signal was required to decode amusement compared to fear, anger and sadness, whereas anger and fear required equivalent amounts of acoustic information to be accurately recognized. These findings confirm that the time course of successful recognition of discrete vocal emotions varies by emotion type. Compared to prior studies, they additionally indicate that the type of auditory signal (speech prosody vs. nonverbal vocalizations) determines how quickly listeners recognize emotions from a speaker’s voice.

Keywords

Nonverbal vocalizations Emotion Duration Gate Recognition 

Notes

Acknowledgements

The authors are grateful to all participants who took part in this study.

Funding

This work was supported by a Doctoral Grant SFRH/BD/92772/2013 awarded to PC, and by Grants IF/00334/2012, PTDC/MHN-PCN/3606/2012, and PTDC/MHC-PCN/0101/2014 awarded to APP. These Grants were funded by the Science and Technology Foundation (Fundação para a Ciência e a Tecnologia - FCT, Portugal) and FEDER (European Regional Development Fund) through the European programs QREN (National Strategic Reference Framework) and COMPETE (Operational Programme ‘Thematic Factors of Competitiveness’).

Compliance with ethical standards

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary material

11031_2019_9783_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)

References

  1. Banse, R., & Scherer, K. R. (1996). Acoustic profiles in vocal emotion expression. Journal of Personality and Social Psychology, 70(3), 614–636.Google Scholar
  2. Barr, R. G., Chen, S., Hopkins, B., & Westra, T. (1996). Crying patterns in preterm infants. Developmental Medicine and Child Neurology, 38(4), 345–355.Google Scholar
  3. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R Package Version, 1(7), 1–23.Google Scholar
  4. Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of General Psychology, 5(4), 323–370.Google Scholar
  5. Belin, P. (2006). Voice processing in human and non-human primates. Philosophical Transactions of the Royal Society of London B, 361(1476), 2091–2107.Google Scholar
  6. Belin, P., Fecteau, S., & Bédard, C. (2004). Thinking the voice: Neural correlates of voice perception. Trends in Cognitive Sciences, 8(3), 129–135.Google Scholar
  7. Belin, P., Fillion-Bilodeau, S., & Gosselin, F. (2008). The Montreal Affective Voices: A validated set of nonverbal affect bursts for research on auditory affective processing. Behavior Research Methods, 40(2), 531–539.Google Scholar
  8. Bergmann, G., Goldbeck, T., & Scherer, K. R. (1988). Emotionale Eindruckswirkung von prosodischen Sprechmerkmalen (The effects of prosody on emotion inference). Zeitschrift fur Experimentelle und Angewandte Psychologie, 35, 167–200.Google Scholar
  9. Boersma, P., & Weenink, D. (2005). Praat: Doing phonetics by computer. 2009. Computer program available at http://www.praat.org
  10. Bostanov, V., & Kotchoubey, B. (2004). Recognition of affective prosody: Continuous wavelet measures of event-related brain potentials to emotional exclamations. Psychophysiology, 41(2), 259–268.Google Scholar
  11. Caron, J. E. (2002). From ethology to aesthetics: Evolution as a theoretical paradigm for research on laughter, humor, and other comic phenomena. Humor, 15(3), 245–282.Google Scholar
  12. Cedrus Corporation. (1991). Super Lab, general purpose psychology testing software.Google Scholar
  13. Collignon, O., Girard, S., Gosselin, F., Saint-Amour, D., Lepore, F., & Lassonde, M. (2010). Women process multisensory emotion expressions more efficiently than men. Neuropsychologia, 48(1), 220–225.Google Scholar
  14. Cornew, L., Carver, L., & Love, T. (2010). There’s more to emotion than meets the eye: A processing bias for neutral content in the domain of emotional prosody. Cognition and Emotion, 24(7), 1133–1152.Google Scholar
  15. Cowie, R., & Cornelius, R. R. (2003). Describing the emotional states that are expressed in speech. Speech Communication, 40(1–2), 5–32.Google Scholar
  16. Edmonson, M. S. (1983). Notes on laughter. Anthropological Linguistics, 29, 23–33.Google Scholar
  17. Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.Google Scholar
  18. Gervais, M., & Wilson, D. S. (2005). The evolution and functions of laughter and humor: A synthetic approach. The Quarterly Review of Biology, 80(4), 395–430.Google Scholar
  19. Greatbatch, D., & Clark, T. (2003). Displaying group cohesiveness: Humour and laughter in the public lectures of management gurus. Human Relations, 56(12), 1515–1544.Google Scholar
  20. Hawk, S. T., Van Kleef, G. A., Fischer, A. H., & Van Der Schalk, J. (2009). “Worth a thousand words”: Absolute and relative decoding of nonlinguistic affect vocalizations. Emotion, 9(3), 293.Google Scholar
  21. Hendriks, M. C. P., Croon, M. A., & Vingerhoets, A. J. J. M. (2008). Social reactions to adult crying: The help-soliciting function of tears. The Journal of Social Psychology, 148(1), 22–42.Google Scholar
  22. Hoffman, L., & Rovine, M. J. (2007). Multilevel models for the experimental psychologist: Foundations and illustrative examples. Behavior Research Methods, 39(1), 101–117.Google Scholar
  23. Ito, T. A., Larsen, J. T., Smith, N. K., & Cacioppo, J. T. (1998). Negative information weighs more heavily on the brain: The negativity bias in evaluative categorizations. Journal of Personality and Social Psychology, 75(4), 887.Google Scholar
  24. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.Google Scholar
  25. Juslin, P. N., & Laukka, P. (2001). Impact of intended emotion intensity on cue utilization and decoding accuracy in vocal expression of emotion. Emotion, 1(4), 381.Google Scholar
  26. Juslin, P. N., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129(5), 770.Google Scholar
  27. Kipper, S., & Todt, D. (2001). Variation of sound parameters affects the evaluation of human laughter. Behaviour, 138(9), 1161–1178.Google Scholar
  28. Koeda, M., Belin, P., Hama, T., Masuda, T., Matsuura, M., & Okubo, Y. (2013). Cross-cultural differences in the processing of non-verbal affective vocalizations by Japanese and Canadian listeners. Frontiers in Psychology, 4, 105.Google Scholar
  29. Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest: Tests in linear mixed effects models. R package Version 2.0-20 [Computer software]. Retrieved April 15, 2016.Google Scholar
  30. Latinus, M., & Belin, P. (2011). Human voice perception. Current Biology, 21(4), R143–R145.Google Scholar
  31. Laukka, P. (2005). Categorical perception of vocal emotion expressions. Emotion, 5(3), 277–295.Google Scholar
  32. Laukka, P., Elfenbein, H. A., Söder, N., Nordström, H., Althoff, J., Chui, W., et al. (2013). Cross-cultural decoding of positive and negative non-linguistic emotion vocalizations. Frontiers in Psychology, 4, 353.Google Scholar
  33. Lima, C. F., Anikin, A., Monteiro, A. C., Scott, S. K., & Castro, S. L. (2018). Automaticity in the recognition of nonverbal emotional vocalizations. Emotion, 19(2), 219–233.Google Scholar
  34. Lima, C. F., Castro, S. L., & Scott, S. K. (2013). When voices get emotional: A corpus of nonverbal vocalizations for research on emotion processing. Behavior Research Methods, 45(4), 1234–1245.Google Scholar
  35. Liu, T., Pinheiro, A. P., Deng, G., Nestor, P. G., McCarley, R. W., & Niznikiewicz, M. A. (2012). Electrophysiological insights into processing nonverbal emotional vocalizations. NeuroReport, 23(2), 108–112.Google Scholar
  36. Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1(3), 86–92.Google Scholar
  37. McNeish, D. M., & Stapleton, L. M. (2016). The effect of small sample size on two-level model estimates: A review and illustration. Educational Psychology Review, 28(2), 295–314.Google Scholar
  38. Mehu, M., & Dunbar, R. I. (2008). Naturalistic observations of smiling and laughter in human group interactions. Behaviour, 145(12), 1747–1780.Google Scholar
  39. Meneses, J. A. C., & Díaz, J. M. M. (2017). Vocal emotion expressions effects on cooperation behavior. Psicológica, 38, 1–24.Google Scholar
  40. Murphy, S. T., & Zajonc, R. B. (1993). Affect, cognition, and awareness: Affective priming with optimal and suboptimal stimulus exposures. Journal of Personality and Social Psychology, 64(5), 723–739.Google Scholar
  41. Naranjo, C., Kornreich, C., Campanella, S., Noël, X., Vandriette, Y., Gillain, B., et al. (2011). Major depression is associated with impaired processing of emotion in music as well as in facial and vocal stimuli. Journal of Affective Disorders, 128(3), 243–251.Google Scholar
  42. Nesse, R. M. (1990). Evolutionary explanations of emotions. Human Nature, 1(3), 261–289.Google Scholar
  43. Paquette, S., Peretz, I., & Belin, P. (2013). The “Musical Emotional Bursts”: A validated set of musical affect bursts to investigate auditory affective processing. Frontiers in Psychology, 4, 509.Google Scholar
  44. Paulmann, S., & Kotz, S. A. (2008). An ERP investigation on the temporal dynamics of emotional prosody and emotional semantics in pseudo-and lexical-sentence context. Brain and Language, 105(1), 59–69.Google Scholar
  45. Paulmann, S., & Pell, M. D. (2010). Contextual influences of emotional speech prosody on face processing: How much is enough? Cognitive, Affective, & Behavioral Neuroscience, 10(2), 230–242.Google Scholar
  46. Pell, M. D. (2002). Evaluation of nonverbal emotion in face and voice: Some preliminary findings on a new battery of tests. Brain and Cognition, 48(2–3), 499–514.Google Scholar
  47. Pell, M. D., & Kotz, S. A. (2011). On the time course of vocal emotion recognition. PLoS ONE, 6(11), e27256.Google Scholar
  48. Pell, M. D., Rothermich, K., Liu, P., Paulmann, S., Sethi, S., & Rigoulot, S. (2015). Preferential decoding of emotion from human non-linguistic vocalizations versus speech prosody. Biological Psychology, 111, 14–25.Google Scholar
  49. Pinheiro, A. P., Barros, C., Dias, M., & Kotz, S. A. (2017a). Laughter catches attention! Biological Psychology, 130, 11–21.Google Scholar
  50. Pinheiro, A. P., Barros, C., Vasconcelos, M., Obermeier, C., & Kotz, S. A. (2017b). Is laughter a better vocal change detector than a growl? Cortex, 92, 233–248.Google Scholar
  51. Pinheiro, A. P., Del Re, E., Mezin, J., Nestor, P. G., Rauber, A., McCarley, R. W., et al. (2013). Sensory-based and higher-order operations contribute to abnormal emotional prosody processing in schizophrenia: An electrophysiological investigation. Psychological Medicine, 43(3), 603–618.Google Scholar
  52. Pinheiro, A. P., Rezaii, N., Rauber, A., Liu, T., Nestor, P. G., McCarley, R. W., et al. (2014). Abnormalities in the processing of emotional prosody from single words in schizophrenia. Schizophrenia Research, 152(1), 235–241.Google Scholar
  53. Rigoulot, S., Wassiliwizky, E., & Pell, M. D. (2013). Feeling backwards? How temporal order in speech affects the time course of vocal emotion recognition. Frontiers in Psychology, 4(367), 1–14.Google Scholar
  54. Ruffman, T., Henry, J. D., Livingstone, V., & Phillips, L. H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience and Biobehavioral Reviews, 32(4), 863–881.Google Scholar
  55. Salasoo, A., & Pisoni, D. B. (1985). Interaction of knowledge sources in spoken word identification. Journal of Memory and Language, 24(2), 210–231.Google Scholar
  56. Sauter, D. A., & Eimer, M. (2010). Rapid detection of emotion from human vocalizations. Journal of Cognitive Neuroscience, 22(3), 474–481.Google Scholar
  57. Sauter, D. A., Eisner, F., Calder, A. J., & Scott, S. K. (2010a). Perceptual cues in nonverbal vocal expressions of emotion. The Quarterly Journal of Experimental Psychology, 63(11), 2251–2272.Google Scholar
  58. Sauter, D. A., Eisner, F., Ekman, P., & Scott, S. K. (2010b). Cross-cultural recognition of basic emotions through nonverbal emotional vocalizations. Proceedings of the National Academy of Sciences, 107(6), 2408–2412.Google Scholar
  59. Sauter, D. A., & Scott, S. K. (2007). More than one kind of happiness: Can we recognize vocal expressions of different positive states? Motivation and Emotion, 31(3), 192–199.Google Scholar
  60. Scheiner, E., Hammerschmidt, K., Jürgens, U., & Zwirner, P. (2002). Acoustic analyses of developmental changes and emotional expression in the preverbal vocalizations of infants. Journal of Voice, 16(4), 509–529.Google Scholar
  61. Scherer, K. R. (1989). Vocal correlates of emotional arousal and affective disturbance. In A. Manstead & H. Wagner (Eds.), Handbook of social psychophysiology: Emotion and social behavior (pp. 165–197). London: Wiley.Google Scholar
  62. Scherer, K. R., & Ellgring, H. (2007). Multimodal expression of emotion: Affect programs or componential appraisal patterns? Emotion, 7, 158–171.Google Scholar
  63. Schirmer, A., & Kotz, S. A. (2006). Beyond the right hemisphere: Brain mechanisms mediating vocal emotional processing. Trends in Cognitive Sciences, 10(1), 24–30.Google Scholar
  64. Schirmer, A., Kotz, S. A., & Friederici, A. D. (2002). Sex differentiates the role of emotional prosody during word processing. Cognitive Brain Research, 14(2), 228–233.Google Scholar
  65. Schirmer, A., Kotz, S. A., & Friederici, A. D. (2005a). On the role of attention for the processing of emotions in speech: Sex differences revisited. Cognitive Brain Research, 24(3), 442–452.Google Scholar
  66. Schirmer, A., Simpson, E., & Escoffier, N. (2007). Listen up! Processing of intensity change differs for vocal and nonvocal sounds. Brain Research, 1176, 103–112.Google Scholar
  67. Schirmer, A., Striano, T., & Friederici, A. D. (2005b). Sex di¡erences in the preattentive processing of vocal emotional expressions. NeuroReport, 16(6), 635–639.Google Scholar
  68. Schirmer, A., Zysset, S., Kotz, S. A., & Von Cramon, D. Y. (2004). Gender differences in the activation of inferior frontal cortex during emotional speech perception. NeuroImage, 21(3), 1114–1123.Google Scholar
  69. Schlegel, K., Vicaria, I. M., Isaacowitz, D. M., & Hall, J. A. (2017). Effectiveness of a short audiovisual emotion recognition training program in adults. Motivation and Emotion, 41(5), 646–660.Google Scholar
  70. Schröder, M. (2003). Experimental study of affect bursts. Speech Communication, 40(1), 99–116.Google Scholar
  71. Simon-Thomas, E. R., Keltner, D. J., Sauter, D., Sinicropi-Yao, L., & Abramson, A. (2009). The voice conveys specific emotions: Evidence from vocal burst displays. Emotion, 9(6), 838–846.Google Scholar
  72. Sobin, C., & Alpert, M. (1999). Emotion in speech: The acoustic attributes of fear, anger, sadness, and joy. Journal of Psycholinguistic Research, 23(4), 347–365.Google Scholar
  73. Stapells, D. R. (2002). Cortical event-related potentials to auditory stimuli. Handbook of Clinical Audiology, 5, 378–406.Google Scholar
  74. Van Bezooijen, R. (1984). Characteristics and recognizability of vocal expressions of emotion (Vol. 5). Berlin: Walter de Gruyter.Google Scholar
  75. Vasconcelos, M., Dias, M., Soares, A. P., & Pinheiro, A. P. (2017). What is the melody of that voice? Probing unbiased recognition accuracy of nonverbal vocalizations with the Montreal Affective Voices. Journal of Nonverbal Behavior, 41(3), 239–267.Google Scholar
  76. Vettin, J., & Todt, D. (2004). Laughter in conversation: Features of occurrence and acoustic structure. Journal of Nonverbal Behavior, 28(2), 93–115.Google Scholar
  77. Vingerhoets, A., Bylsma, L., & Rottenberg, J. (2009). Crying: A biopsychosocial phenomenon. Tears in the Graeco-Roman World 439–475.Google Scholar
  78. Zimmer, U., Höfler, M., Koschutnig, K., & Ischebeck, A. (2016). Neuronal interactions in areas of spatial attention reflect avoidance of disgust, but orienting to danger. NeuroImage, 134, 94–104.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Psychological Neuroscience Lab, CIPsi, School of PsychologyUniversity of MinhoBragaPortugal
  2. 2.Faculdade de PsicologiaUniversidade de LisboaLisboaPortugal

Personalised recommendations