Motivation and Emotion

, Volume 43, Issue 6, pp 929–939 | Cite as

EmoMadrid: An emotional pictures database for affect research

  • L. Carretié
  • M. TapiaEmail author
  • S. López-Martín
  • J. Albert
Original Paper


Emotional scenes are, along with facial expressions, the most employed stimuli in Affective Sciences. However, as compared to facial expressions, available emotional scene databases are scarce and, in some cases, obsolete and overused. This paper describes EmoMadrid (, an open access database currently consisting of 813 emotional pictures. Valence and Arousal of each of these pictures were assessed by an average sample of 146 volunteers per session, who evaluated an average of 155 pictures each. Total participants up to the present is 768. EmoMadrid includes information, not provided in other databases, on low order visual parameters such as spatial frequency, luminosity, and chromatic complexity. These parameters are of crucial interest, since they have been revealed to interact with the affective content of pictures. EmoMadrid shows a robust short and long term reliability (under and over 5 years, respectively) and has already been employed in 15 Human Neuroscience and Behavior published studies, despite it has only been described in its web page.


Emotional pictures database Valence Arousal Spatial frequency Luminosity Chromatic complexity 



We wish to thank Elisabeth Ruiz Padial and Francisco Mercado for their help in the assessment of EmoMadrid pictures at the Universidad de Jaén and Universidad Rey Juan Carlos, respectively. We also acknowledge the disinterested contribution made by the photographers Galder Izaguirre, Víctor Nogales, Óscar Rodrigo and Jordi García-Pons.


This work was supported by the FEDER/Ministerio de Ciencia, Innovación y Universidades (PGC2018-093570-B-I00) and by the Comunidad de Madrid (S2015/HUM-3327).

Compliance with ethical Standards

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.


  1. Andreu, C. I., Cosmelli, D., Slagter, H. A., & Franken, I. H. (2018). Effects of a brief mindfulness-meditation intervention on neural measures of response inhibition in cigarette smokers. PLoS ONE, 13(1), e0191661.PubMedPubMedCentralGoogle Scholar
  2. Anil Kumar, K. M., Kiran, B. R., Shreyas, B. R., & Victor, S. J. (2015). A multimodal approach to detect user’s emotion. Procedia Computer Science, 70, 296–303.Google Scholar
  3. Bradley, M. M., Codispoti, M., Sabatinelli, D., & Lang, P. J. (2001). Emotion and motivation II: Sex differences in picture processing. Emotion, 3, 300–319.Google Scholar
  4. Bradley, M. M., Hamby, S., Löw, A., & Lang, P. J. (2007). Brain potentials in perception: Picture complexity and emotional arousal. Psychophysiology, 44, 364–373.PubMedGoogle Scholar
  5. Bradley, M. M., & Lang, P. J. (2000). Measuring emotion: Behavior, feeling, and physiology. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 49–59). Oxford: Oxford University Press.Google Scholar
  6. Carboni, A., Kessel, D., Capilla, A., & Carretié, L. (2017). The influence of affective state on exogenous attention to emotional distractors: Behavioral and electrophysiological correlates. Scientific Reports, 7, 8068.PubMedPubMedCentralGoogle Scholar
  7. Carretié, L., Kessel, D., Carboni, A., López-Martín, S., Albert, J., Tapia, M., et al. (2013). Exogenous attention to facial vs non-facial emotional visual stimuli. Social Cognitive and Affective Neuroscience, 8, 764–773.PubMedGoogle Scholar
  8. Carretié, L., Ruiz-Padial, E., López-Martín, S., & Albert, J. (2011). Decomposing unpleasantness: Differential exogenous attention to disgusting and fearful stimuli. Biological Psychology, 86, 247–253.PubMedGoogle Scholar
  9. Charles, S. T., Reynolds, C. A., & Gatz, M. (2001). Age-related differences and change in positive and negative affect over 23 years. Journal of Personality and Social Psychology, 80(1), 136.PubMedGoogle Scholar
  10. Codispoti, M., Mazzetti, M., & Bradley, M. M. (2009). Unmasking emotion: Exposure duration and emotional engagement. Psychophysiology, 46, 731–738.PubMedGoogle Scholar
  11. Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database (GAPED): A new 730-picture database focusing on valence and normative significance. Behavior Research Methods, 43, 468–477.PubMedGoogle Scholar
  12. Delplanque, S., N’diaye, K., Scherer, K., & Grandjean, D. (2007). Spatial frequencies or emotional effects? A systematic measure of spatial frequencies for IAPS pictures by a discrete wavelet analysis. Journal of Neuroscience Methods, 165, 144–150.PubMedGoogle Scholar
  13. Ebner, N. C., Riediger, M., & Lindenberger, U. (2010). FACES—A database of facial expressions in young, middle-aged, and older women and men: Development and validation. Behavior Research Methods, 42, 351–362.PubMedGoogle Scholar
  14. Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.Google Scholar
  15. Frühholz, S., Jellinghaus, A., & Herrmann, M. (2011). Time course of implicit processing and explicit processing of emotional faces and emotional words. Biological Psychology, 87, 265–274.PubMedGoogle Scholar
  16. Haberkamp, A., Glombiewski, J. A., Schmidt, F., & Barke, A. (2017). The DIsgust-RelaTed-images (DIRTI) database: Validation of a novel standardized set of disgust pictures. Behaviour Research and Therapy, 89, 86–94.PubMedGoogle Scholar
  17. Haxby, J. V., & Gobbini, M. I. (2011). Distributed neural systems for face perception. In A. J. Calder, G. Rhodes, M. H. Johnson, & J. V. Haxby (Eds.), The Oxford handbook of face perception (pp. 93–107). Oxford: Oxford University Press.Google Scholar
  18. Jun, S., Lee, S. K., & Han, S. (2018). Differences in large-scale and sliding-window-based functional networks of reappraisal and suppression. Science of Emotion and Sensibility, 21, 83–102.Google Scholar
  19. Kosonogov, V., Sánchez-Navarro, J. P., Martínez-Selva, J. M., Torrente, G., & Carrillo-Verdejo, E. (2016). Social stimuli increase physiological reactivity but not defensive responses. Scandinavian Journal of Psychology, 57, 393–398.PubMedGoogle Scholar
  20. Kuchinke, L., Schlochtermeier, L., & Jacobs, A. M. (2011). Differences in the neural processing of emotional pictures and words are modulated by stimulus complexity. Psychophysiology, 48, S3.Google Scholar
  21. Kurdi, B., Lozano, S., & Banaji, M. R. (2016). Introducing the Open Affective Standardized Image Set (OASIS). Behavior Research Methods, 37, 626–630.Google Scholar
  22. Lakens, D., Fockenberg, D. A., Lemmens, K. P., Ham, J., & Midden, C. J. (2013). Brightness differences influence the evaluation of affective pictures. Cognition and Emotion, 27, 1225–1246.PubMedGoogle Scholar
  23. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture system (IAPS): Affective ratings of pictures and instruction manual. Gainesville, FL: University of Florida.Google Scholar
  24. Leigland, L. A., Schulz, L. E., & Janowsky, J. S. (2004). Age related changes in emotional memory. Neurobiology of Aging, 25, 1117–1124.PubMedGoogle Scholar
  25. López-Martín, S., Albert, J., Fernández-Jaén, A., & Carretié, L. (2015). Emotional response inhibition in children with attention-deficit/hyperactivity disorder: Neural and behavioural data. Psychological Medicine, 45, 2057–2071.PubMedGoogle Scholar
  26. Lundqvist, D., Flykt, A., & Öhman, A. (1998). The Karolinska directed emotional faces (KDEF). CD ROM from Department of Clinical Neuroscience, Psychology Section, Karolinska Institutet.Google Scholar
  27. Marchewka, A., Żurawski, Ł., Jednoróg, K., & Grabowska, A. (2014). The Nencki Affective Picture System (NAPS): Introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behavior Research Methods, 46(2), 596–610.PubMedGoogle Scholar
  28. Mavratzakis, A., Herbert, C., & Walla, P. (2016). Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: A simultaneous EEG and facial EMG study. Neuroimage, 124, 931–946.PubMedGoogle Scholar
  29. Mel’nikov, M., Petrovskii, E., Bezmaternykh, D., Kozlova, L., Shtark, M., Savelov, A., et al. (2018). fMRI responses in healthy individuals and in patients with mild depression to presentation of pleasant and unpleasant images. Bulletin of Experimental Biology and Medicine, 164, 601–604.PubMedGoogle Scholar
  30. Michałowski, J. M., Droździel, D., Matuszewski, J., Koziejowski, W., Jednoróg, K., & Marchewka, A. (2017). The set of fear inducing pictures (SFIP): Development and validation in fearful and nonfearful individuals. Behavior Research Methods, 49, 1407–1419.PubMedGoogle Scholar
  31. Moltó, J., Montañés, S., Poy, R., Segarra, P., Pastor, M. C., Tormo, M. P., et al. (1999). Un nuevo método para el estudio experimental de las emociones: El International Affective Picture System (IAPS). Adaptación española [A new method for the experimental study of emotions: The International Affective Picture System (IAPS). Spanish adaptation]. Revista de Psicología General y Aplicada, 52, 55–87.Google Scholar
  32. Müller, M. M., Andersen, S. K., & Keil, A. (2008). Time course of competition for visual processing resources between emotional pictures and foreground task. Cerebral Cortex, 18, 1892–1899.PubMedGoogle Scholar
  33. Olofsson, J. K., Nordin, S., Sequeira, H., & Polich, J. (2008). Affective picture processing: An integrative review of ERP findings. Biological Psychology, 77, 247–265.PubMedGoogle Scholar
  34. Perlman, S. B., & Pelphrey, K. A. (2001). Developing connections for affective regulation: Age-related changes in emotional brain connectivity. Journal of Experimental Child Psychology, 108(3), 607–620.Google Scholar
  35. Román, F. J., García-Rubio, M. J., Privado, J., Kessel, D., López-Martín, S., Martínez, K., et al. (2015). Adaptive working memory training reveals a negligible effect of emotional stimuli over cognitive processing. Personality and Individual Differences, 74, 165–170.Google Scholar
  36. Romero-Ferreiro, V., Aguado, L., Torío, I., Sánchez-Morla, E. M., Caballero-González, M., & Rodriguez-Jimenez, R. (2018). Influence of emotional contexts on facial emotion attribution in schizophrenia. Psychiatry Research, 270, 554–559.PubMedGoogle Scholar
  37. Ruiz-Padial, E., Medialdea, M. M., del Paso, G. R., & Thayer, J. F. (2018). Individual differences in attentional capture by pictures of fear and disgust as indexed by cardiac responses. Journal of Psychophysiology, 32(4), 191–201.Google Scholar
  38. Russell, J. A. (1979). Affective space is bipolar. Journal of Personality and Social Psychology, 37, 345–356.Google Scholar
  39. Saal, F. E., Downey, R. G., & Lahey, M. A. (1980). Rating the ratings: Assessing the psychometric quality of rating data. Psychological Bulletin, 88, 413–428.Google Scholar
  40. Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W. T.,… & Jeffries, J. (2011). Emotional perception: meta-analyses of face and natural scene processing. Neuroimage, 54, 2524–2533.Google Scholar
  41. Soares, A., Pinheiro, A., Costa, A., Frade, C., Comesaña, M., & Pureza, R. (2015). Adaptation of the international affective picture system (IAPS) for european portuguese. Behavior Research Methods, 47, 1159–1177.PubMedGoogle Scholar
  42. Thom, N., Knight, J., Dishman, R., Sabatinelli, D., Johnson, D. C., & Clementz, B. (2014). Emotional scenes elicit more pronounced self-reported emotional experience and greater EPN and LPP modulation when compared to emotional faces. Cognitive, Affective, & Behavioral Neuroscience, 14, 849–860.Google Scholar
  43. Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., et al. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168, 242–249.PubMedPubMedCentralGoogle Scholar
  44. Urry, H. L., & Gross, J. J. (2010). Emotion regulation in older age. Current Directions in Psychological Science, 19, 352–357.Google Scholar
  45. Verschoor, A. M., & van Wieringen, P. C. W. (1970). Vigilance performance and skin conductance. Acta Psychologica, 33, 394–401.PubMedGoogle Scholar
  46. Vila, J., Sánchez, M., Ramírez, I., Fernández, M. C., Cobos, P., Rodríguez, S.,… Moltó, J. (2001). El Sistema Internacional de Imágenes Afectivas (IAPS): Adaptación española. Segunda parte [The International Affective Picture System (IAPS): Spanish adaptation. Second part]. Revista de Psicología General y Aplicada, 54, 635–657.Google Scholar
  47. Xu, M., Ding, C., Li, Z., Zhang, J., Zeng, Q., Diao, L., et al. (2016a). The divergent effects of fear and disgust on unconscious inhibitory control. Cognition and Emotion, 30, 731–744.PubMedGoogle Scholar
  48. Xu, M., Li, Z., Ding, C., Zhang, J., Fan, L., Diao, L., et al. (2015). The divergent effects of fear and disgust on inhibitory control: An ERP study. PLoS ONE, 10(6), e0128932.PubMedPubMedCentralGoogle Scholar
  49. Xu, M., Li, Z., Fan, L., Sun, L., Ding, C., Li, L., et al. (2016b). Dissociable effects of fear and disgust in proactive and reactive inhibition. Motivation and Emotion, 40, 334–342.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Facultad de PsicologíaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations