Motivation and Emotion

, Volume 39, Issue 1, pp 25–33 | Cite as

Goal pursuit and energy conservation: energy investment increases with task demand but does not equal it

  • Michael Richter
Original Paper


According to motivational intensity theory, energy investment in goal pursuit is determined by the motivation to avoid wasting energy. Two experiments tested this hypothesis by manipulating the difficulty of an isometric hand grip task across four levels in a between-persons (Study 1) and a within-persons (Study 2) design. Supporting motivational intensity theory’s prediction, the results showed that invested energy—indicated by exerted grip force—was a function of task difficulty: The higher the difficulty, the higher the energy investment. However, the data also indicated that participants invested considerably more energy than required, questioning the primacy of energy conservation.


Motivational intensity theory Goal pursuit Energy conservation Energy investment Task difficulty Hand grip task 



This research was supported by a research Grant (10014_134586) from the Swiss National Science Foundation. I am grateful to Kerstin Brinkmann and Guido H. E. Gendolla for comments on an early version of this article.


  1. Backs, R. W., & Seljos, K. A. (1994). Metabolic and cardiorespiratory measures of mental effort: The effects of level of difficulty in a working memory task. International Journal of Psychophysiology, 16, 57–68.PubMedCrossRefGoogle Scholar
  2. Boska, M. (1994). ATP production rates as a function of force level in the human gastrocnemius/soleus using 31P MRS. Magnetic Resonance in Medicine, 32, 1–10. doi: 10.1002/mrm.1910320102.PubMedCrossRefGoogle Scholar
  3. Brehm, J. W., & Self, E. A. (1989). The intensity of motivation. Annual Review of Psychology, 40, 109–131. doi: 10.1146/ Scholar
  4. Brener, J. (1987). Behavioural energetics: Some effects of uncertainty on the mobilization and distribution of energy. Psychophysiology, 24, 499–512.PubMedCrossRefGoogle Scholar
  5. Brener, J., & Mitchell, S. (1989). Changes in energy expenditure and work during response acquisition in rats. Journal of Experimental Psychology: Animal Behavior Process, 15, 166–175.Google Scholar
  6. Carroll, D., Turner, J. R., & Prasad, R. (1986). The effects of level of difficulty of mental arithmetic challenge on heart rate and oxygen consumption. International Journal of Psychophysiology, 4, 167–173.PubMedCrossRefGoogle Scholar
  7. Dixon, P. (2003). The p-value fallacy and how to avoid it. Canadian Journal of Experimental Psychology, 57, 189–202.PubMedCrossRefGoogle Scholar
  8. Eubanks, L., Wright, R. A., & Williams, B. J. (2002). Reward influences on the heart: Cardiovascular response as a function of incentive value at five levels of task demand. Motivation and Emotion, 26, 139–152. doi: 10.1023/A:1019863318803.CrossRefGoogle Scholar
  9. Fagraeus, L., & Linnarsson, D. (1976). Autonomic origin of heart rate fluctuations at the onset of muscular exercise. Journal of Applied Physiology, 40, 679–682.PubMedGoogle Scholar
  10. Fairclough, S. H., & Houston, K. (2004). A metabolic measure of mental effort. Biological Psychology, 66, 177–190. doi: 10.1016/j.biopsycho.2003.10.001.PubMedCrossRefGoogle Scholar
  11. Filion, R. D. L., Fowler, S. C., & Notterman, J. N. (1970). Effort expenditure during proportionally reinforced responding. Quarterly Journal of Experimental Psychology, 22, 398–405. doi: 10.1080/14640747008401913.CrossRefGoogle Scholar
  12. Gendolla, G. H. E., Richter, M., & Silvia, P. J. (2008). Self-focus and task difficulty effects on effort-related cardiovascular reactivity. Psychophysiology, 45, 653–662. doi: 10.1111/j.1469-8986.2008.00655.x.PubMedCrossRefGoogle Scholar
  13. Gendolla, G. H. E., Wright, R. A., & Richter, M. (2012). Effort intensity: Some insights from the cardiovascular system. In R. M. Ryan (Ed.), The oxford handbook on motivation (pp. 420–438). New York, NY: Oxford University Press.Google Scholar
  14. Jeneson, J. A. L., Westerhoff, H. V., Brown, T. R., Van Echteld, C. J. A., & Berger, R. (1995). Quasi-linear relationship between Gibbs free energy of ATP hydrolysis and power output in human forearm muscle. American Journal of Physiology. Cell Physiology, 37, C1474–C1484.Google Scholar
  15. Johansson, T. (2011). Hail the impossible: p-Values, evidence, and likelihhod. Scandinavian Journal of Psychology, 52, 113–125. doi: 10.1111/j.1467-9450.2010.00852.x.PubMedCrossRefGoogle Scholar
  16. Lay, B. S., Sparrow, W. A., Hughes, K. M., & O’Dwyer, N. J. (2002). Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Human Movement Science, 21, 807–830. doi: 10.1016/S0167-9457(02)00166-5.PubMedCrossRefGoogle Scholar
  17. Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis. Behavior Research Methods, 43, 679–690. doi: 10.3758/s13428-010-0049-5.PubMedCrossRefGoogle Scholar
  18. Maughan, R. J., & Gleeson, M. (2010). The biochemical basis of sports performance. Oxford: Oxford University Press.Google Scholar
  19. McClelland, D. C., Atkinson, J. W., Clark, R. A., & Lowell, E. L. (1953). The achievement motive. East Norwalk, CT: Appleton-Century-Crofts.CrossRefGoogle Scholar
  20. Obrist, P. A. (1981). Cardiovascular psychophysiology: A perspective. New York, NY: Plenum.CrossRefGoogle Scholar
  21. Potma, E. J., Stienen, G. J. M., Barends, J. P. F., & Elzinga, G. (1994). Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle. Journal of Physiology, 474, 303–317.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Prompers, J. J., Jeneson, J. A. L., Drost, M. R., Oomens, C. C. W., Strijkers, G. J., & Nicolay, K. (2006). Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR in Biomedicine, 19, 927–953. doi: 10.1002/nbm.PubMedCrossRefGoogle Scholar
  23. Proske, U., & Gandevia, S. C. (2012). The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiological Reviews, 92, 1651–1697. doi: 10.1152/physrev.00048.2011.PubMedCrossRefGoogle Scholar
  24. Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163. doi: 10.2307/271063.CrossRefGoogle Scholar
  25. Richter, M. (2013). A closer look into the multi-layer structure of motivational intensity theory. Social and Personality Psychology Compass, 7, 1–12. doi: 10.1111/spc3.12007.CrossRefGoogle Scholar
  26. Richter, M., Friedrich, A., & Gendolla, G. H. E. (2008). Task difficulty effects on cardiac activity. Psychophysiology, 45, 869–875. doi: 10.1111/j.1469-8986.2008.00688.x.PubMedCrossRefGoogle Scholar
  27. Richter, M., & Gendolla, G. H. E. (2009). The heart contracts to reward: Monetary incentives and preejection period. Psychophysiology, 46, 451–457. doi: 10.1111/j.1469-8986.2009.00795.x451-457.PubMedCrossRefGoogle Scholar
  28. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374. doi: 10.1016/ Scholar
  29. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 225–237. doi: 10.3758/PBR.16.2.225.CrossRefGoogle Scholar
  30. Russ, D. W., Elliott, M. A., Vandenborne, K., Walter, G. A., & Binder-Macleod, S. A. (2002). Metabolic costs of isometric force generation and maintenance of human skeletal muscle. American Journal of Physiology—Endocrinology and Metabolism, 282, E448–E457. doi: 10.1152/ajpendo.00285.2001.PubMedGoogle Scholar
  31. Scholey, A. B., Harper, S., & Kennedy, D. O. (2001). Cognitive demand and blood glucose. Physiology & Behavior, 73, 585–592.CrossRefGoogle Scholar
  32. Sherwood, A., Allen, M. T., Obrist, P. A., & Langer, A. W. (1986). Evaluation of beta-adrenergic influences on cardiovascular and metabolic adjustments to physical and psychological stress. Psychophysiology, 23, 89–104.PubMedCrossRefGoogle Scholar
  33. Sherwood, A., Brener, J., & Moncur, D. (1983). Information and states of motor readiness: Their effects on the covariation of heart rate and energy expenditure. Psychophysiology, 20, 513–529.PubMedCrossRefGoogle Scholar
  34. Sims, J., & Carroll, D. (1990). Cardiovascular and metabolic activity at rest and during psychological and physical challenge in normotensives and subjects with mildly elevated blood pressure. Psychophysiology, 27, 149–156.PubMedCrossRefGoogle Scholar
  35. Sparrow, W. A., & Newell, K. M. (1994). Energy expenditure and motor performance relationships in humans learning a motor task. Psychophysiology, 31, 338–346. doi: 10.1111/j.1469-8986.1994.tb02442.x.PubMedCrossRefGoogle Scholar
  36. Stienen, G. J., Kiers, J. L., Bottinelli, R., & Reggiani, C. (1996). Myofibrillar ATPase activity in skinned human skeletal muscle fibres: Fibre type and temperature dependence. Journal of Physiology, 493, 299–307.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Szentesi, P., Zaremba, R., van Mechelen, W., & Stienen, G. J. M. (2001). ATP utilization for calcium uptake and force production in different types of human skeletal muscle fibres. Journal of Physiology, 531, 393–403.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Turner, J. R., & Carroll, D. (1985). Heart rate and oxygen consumption during mental arithmetic, a video game, and graded exercise: Further evidence of metabolically-exaggerated cardiac adjustments? Psychophysiology, 22, 261–267.PubMedCrossRefGoogle Scholar
  39. Victor, R. G., Seals, D. R., Mark, A. L., & Kempf, J. (1987). Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. The Journal of Clinical Investigation, 79, 508–516. doi: 10.1172/JCI112841.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804.CrossRefGoogle Scholar
  41. Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81. doi: 10.1006/ceps.1999.1015.PubMedCrossRefGoogle Scholar
  42. Wright, R. A. (1996). Brehm’s theory of motivation as a model of effort and cardiovascular response. In P. M. Gollwitzer & J. A. Bargh (Eds.), The psychology of action: Linking cognition and motivation to behavior (pp. 424–453). New York, NY: Guilford.Google Scholar
  43. Wright, R. A. (2008). Refining the prediction of effort: Brehm’s distinction between potential motivation and motivation intensity. Social and Personality Psychology Compass, 2, 682–701. doi: 10.1111/j.1751-9004.2008.00093.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Geneva Motivation Lab, Department of PsychologyUniversity of GenevaGenevaSwitzerland

Personalised recommendations