Motivation and Emotion

, Volume 32, Issue 3, pp 141–157 | Cite as

Brief approaches to assessing task absorption and enhanced subjective experience: Examining ‘short’ and ‘core’ flow in diverse performance domains

  • Andrew J. Martin
  • Susan A. Jackson
Original Paper


The overarching aim of the present study is to expand current approaches to assessing task absorption and subjective experience by assessing two brief measures of flow: (1) ‘short’ flow, reflecting an aggregate or global measure drawn from the ‘long’ multi-item multi-factor flow instrument and (2) ‘core’ flow reflecting the phenomenology of the subjective flow experience itself. We propose that short and core flow have complementary but non-overlapping merits, purposes, and applications. Study 1 examines ‘short’ flow in work (N = 637), sport (N = 239), and music (N = 224). Study 2 examines ‘core’ flow in general school (N = 2,229), extracurricular activity (N = 2,229), mathematics (N = 378), and sport (N = 220) contexts. With few exceptions, both flow measures demonstrated: (a) acceptable model fit, reliability, and distributions, (b) associations with motivation in hypothesized ways, and (c) invariance in factor loadings across diverse samples. Where common data are available, both short and core flow are positively correlated, but with approximately half the variance unexplained they are clearly not the same construct, and so we offer guidance regarding which measure/s to use under particular circumstances. We conclude that the brief flow measures are appropriate for research examining task absorption, subjective experience, and cognate constructs such as motivation.


Flow Measurement Construct validity Positive psychology 


  1. Brown, R. L. (1994). Efficiency of the indirect approach for estimating structural equation models with missing data: A comparison of five methods. Structural Equation Modeling, 1, 287–316.Google Scholar
  2. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: Sage.Google Scholar
  3. Byrne, C., MacDonald, R., & Carlton, L. (2003). Assessing creativity in musical compositions: Flow as an assessment tool. British Journal of Music Education, 20, 277–290. doi: 10.1017/S0265051703005448.CrossRefGoogle Scholar
  4. Byrne, B. M., & Shavelson, R. J. (1987). Adolescent self-concept: Testing the assumption of equivalent structure across gender. American Educational Research Journal, 24, 365–385.Google Scholar
  5. Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255. doi: 10.1207/S15328007SEM0902_5.CrossRefGoogle Scholar
  6. Cronbach, L. J. (1989). Construct validity after thirty years. In R. E. Linn (Ed.), Intelligence: Measurement, theory, and public policy: Proceedings of a symposium in honor of Lloyd G. Humphreys. Urbana, IL: University of Illinois Press.Google Scholar
  7. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper & Row.Google Scholar
  8. Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York: Harper Collins.Google Scholar
  9. Csikszentmihalyi, M. (1997). Finding flow. New York: Harper Collins.Google Scholar
  10. Csikszentmihalyi, M., & Csikszentmihalyi, I. (Eds.). (1988). Optimal experience: Psychological studies of flow in consciousness. Cambridge: Cambridge University Press.Google Scholar
  11. Delle Fave, A., Bassi, M., & Massimini, F. (2003). Quality of experience and risk perception in high-altitude rock climbing. Journal of Applied Sport Psychology, 15, 82–98. doi: 10.1080/10413200305402.CrossRefGoogle Scholar
  12. Fry, G., & Martin, A. J. (1994). Factors contributing to identification and incidence of stress during the school practicum as reported by supervising teachers. In T. A. Simpson (Ed.), Teacher Educators’ Annual Handbook. Queensland: QUT Press.Google Scholar
  13. Goldstein, H. (2003). Multilevel statistical models (3rd ed.). London: Hodder Arnold.Google Scholar
  14. Graham, J. W., & Hoffer, S. M. (2000). Multiple imputation in multivariate research. In T. D. Little, K. U. Schnable, & J. Baumert (Eds.), Modeling longitudinal and multilevel data: Practical issues, applied approaches, and specific examples (pp. 201–218). NJ: Erlbaum.Google Scholar
  15. Grove, J. R., & Lewis, M. A. E. (1996). Hypnotic susceptibility and the attainment of flowlike states during exercise. Journal of Sport & Exercise Psychology, 18, 380–391.Google Scholar
  16. Gunderson, J. A. (2003). Csikszentmihalyi’s state of flow and effective teaching. Unpublished doctoral dissertation, The Claremont Graduate University, California.Google Scholar
  17. Hattie, J. (1992). Self-concept. Hillsdale, NJ: Erlbaum.Google Scholar
  18. Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453. doi: 10.1037/1082-989X.3.4.424.CrossRefGoogle Scholar
  19. Hu, L., & Bentler, P. M. (1999). Cut-off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  20. Jackson, S. A. (1992). Athletes in flow: A qualitative investigation of flow states in elite figure skaters. Journal of Applied Sport Psychology, 4, 161–180. doi: 10.1080/10413209208406459.CrossRefGoogle Scholar
  21. Jackson, S. A. (1995). Factors influencing the occurrence of flow states in elite athletes. Journal of Applied Sport Psychology, 7, 135–163. doi: 10.1080/10413209508406962.CrossRefGoogle Scholar
  22. Jackson, S. A. (1996). Toward a conceptual understanding of the flow experience in elite athletes. Research Quarterly for Exercise and Sport, 67, 76–90.PubMedGoogle Scholar
  23. Jackson, S. A., & Csikszentmihalyi, M. (1999). Flow in sports: The keys to optimal experiences and performances. Champaign, IL: Human Kinetics.Google Scholar
  24. Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in physical activity: The Flow State Scale-2 (FSS-2) and Dispositional Flow Scale-2 (DFS-2). Journal of Sport & Exercise Psychology, 24, 133–150.Google Scholar
  25. Jackson, S. A., & Eklund, R. C. (2004). The flow scales manual. Morgantown, WV: Fitness Information Technology.Google Scholar
  26. Jackson, S. A., Kimiecik, J., Ford, S., & Marsh, H. W. (1998). Psychological corrrelates of flow in sport. Journal of Sport & Exercise Psychology, 20, 358–378.Google Scholar
  27. Jackson, S. A., & Marsh, H. W. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport & Exercise Psychology, 18, 17–35.Google Scholar
  28. Jackson, S. A., Martin, A. J., & Eklund, R. C. (in press). Long and short measures of flow: Examining construct validity of the FSS-2, DFS-2, and new brief counterparts. Journal of Sport & Exercise Psychology.Google Scholar
  29. Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Chicago: Scientific Software International.Google Scholar
  30. Jöreskog, K. G., & Sörbom, D. (2006). LISREL 8.80. Chicago: Scientific Software International.Google Scholar
  31. Karasek, R. A., & Theorell, T. (1990). Healthy work: Stress, productivity, and the reconstruction of working life. New York: Basic Books.Google Scholar
  32. Kenny, D. A., & McCoach, D. B. (2003). Effect of the number of variables on measures of fit in structural equation modelling. Structural Equation Modeling, 10, 333–351. doi: 10.1207/S15328007SEM1003_1.CrossRefGoogle Scholar
  33. Little, R. J. A., & Rubin, D. B. (1987). Statistical analysis with missing data. New York: Wiley.Google Scholar
  34. Luthans, F., & Martinko, M. (1987). Behavioral approaches to organizations. In C. L. Cooper & I. Robertson (Eds.), International review of industrial and organizational psychology. Chichester: Wiley.Google Scholar
  35. Luthar, S. S., & Cicchetti, D. (2000). The construct of resilience: Implications for interventions and social policies. Development and Psychopathology, 12, 857–885. doi: 10.1017/S0954579400004156.CrossRefGoogle Scholar
  36. Marsh, H. W. (1993). The multidimensional structure of academic self-concept: Invariance over gender and age. American Educational Research Journal, 30, 841–860.Google Scholar
  37. Marsh, H. W. (2002). A multidimensional physical self-concept: A construct validity approach to theory, measurement, and research. Psychology: The Journal of the Hellenic Psychological Society, 9, 459–493.Google Scholar
  38. Marsh, H. W., Balla, J. R., & Hau, K. T. (1996). An evaluation of incremental fit indices: A clarification of mathematical and empirical processes. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling techniques (pp. 315–353). Hillsdale, NJ: Erlbaum.Google Scholar
  39. Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit indices in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 102, 391–410. doi: 10.1037/0033-2909.103.3.391.CrossRefGoogle Scholar
  40. Marsh, H. W., Craven, R. G., & Martin, A. J. (2006a). What is the nature of self-esteem? Unidimensional and multidimensional perspectives. In M. Kernis (Ed.), Self-esteem: Issues and Answers. NY: Psychology Press.Google Scholar
  41. Marsh, H. W., Ellis, L. A., Parada, R. H., Richards, G., & Heubeck, B. G. (2005). A short version of the Self Description Questionnaire II: Operationalizing criteria for short-form evaluation with new applications of confirmatory factor analyses. Psychological Assessment, 17, 81–102. doi: 10.1037/1040-3590.17.1.81.PubMedCrossRefGoogle Scholar
  42. Marsh, H. W., & Jackson, S. A. (1999). Flow experiences in sport: Construct validation of multidimensional hierarchical state and trait responses. Structural Equation Modeling, 6, 343–371.Google Scholar
  43. Marsh, H. W., Martin, A. J., & Hau, K. T. (2006b). A multiple method perspective on self-concept research in educational psychology: A construct validity approach. In M. Eid & E. Diener (Eds), Handbook of Multimethod Measurement in Psychology. Washington, DC: American Psychological Association Press.Google Scholar
  44. Martin, A. J. (2001). The Student Motivation Scale: A tool for measuring and enhancing motivation. Australian Journal of Guidance & Counselling, 11, 1–20.Google Scholar
  45. Martin, A. J. (2003). The Student Motivation Scale: Further testing of an instrument that measures school students’ motivation. Australian Journal of Education, 47, 88–106.Google Scholar
  46. Martin, A. J. (2005). Exploring the effects of a youth enrichment program on academic motivation and engagement. Social Psychology of Education, 8, 179–206. doi: 10.1007/s11218-004-6487-0.CrossRefGoogle Scholar
  47. Martin, A. J. (2006a). Personal bests (PBs): A proposed multidimensional model and empirical analysis. The British Journal of Educational Psychology, 76, 803–825. doi: 10.1348/000709905X55389.PubMedCrossRefGoogle Scholar
  48. Martin, A. J. (2006b). The motivation and engagement scale. Sydney, Australia: Lifelong Achievement Group.
  49. Martin, A. J. (2006c). The relationship between teachers’ perceptions of student motivation and engagement and teachers’ enjoyment of and confidence in teaching. Asia-Pacific Journal of Teacher Education, 34, 73–93. doi: 10.1080/13598660500480100.CrossRefGoogle Scholar
  50. Martin, A. J. (2007). Examining a multidimensional model of student motivation and engagement using a construct validation approach. The British Journal of Educational Psychology, 77, 413–440. doi: 10.1348/000709906X118036.PubMedCrossRefGoogle Scholar
  51. Martin, A. J. (2008a). Enhancing student motivation and engagement: The effects of a multidimensional intervention. Contemporary Educational Psychology, 33, 239–269. doi: 10.1016/j.cedpsych.2006.11.003.CrossRefGoogle Scholar
  52. Martin, A. J. (2008b). Motivation and engagement in music and sport: Testing a multidimensional framework in diverse performance settings. Journal of Personality.Google Scholar
  53. Martin, A. J. (in press a). How domain specific are motivation and engagement across school, sport, and music? A substantive-methodological synergy assessing young sportspeople and musicians. Contemporary Educational Psychology.Google Scholar
  54. Martin, A. J. (in press b). Motivation and engagement in diverse performance domains: Testing their generality across school, university/college, work, sport, music, and daily life. Journal of Research in Personality.Google Scholar
  55. Martin, A. J., & Marsh, H. W. (2006). Academic resilience and its psychological and educational correlates: A construct validity approach. Psychology in the Schools, 43, 267–282. doi: 10.1002/pits.20149.CrossRefGoogle Scholar
  56. Martin, A. J., & Marsh, H. W. (2008a). Academic buoyancy: Towards an understanding of students’ everyday academic resilience. Journal of School Psychology, 46, 53–83. doi: 10.1016/j.jsp. 2007.01.002.CrossRefPubMedGoogle Scholar
  57. Martin, A. J., & Marsh, H. W. (2008b). Workplace and academic buoyancy: Psychometric assessment and construct validity amongst school personnel and students. Journal of Psychoeducational Assessment, 26, 168–184. doi: 10.1177/0734282907313767.CrossRefGoogle Scholar
  58. Martin, A. J., Tipler, D. V., Marsh, H. W., Richards, G. E., & Williams, M. R. (2006). Assessing multidimensional physical activity motivation: A construct validity study of high-school students. Journal of Sport & Exercise Psychology, 28, 171–192.Google Scholar
  59. Martin, J. J., & Cutler, K. (2002). An exploratory study of flow and motivation in theater actors. Journal of Applied Sport Psychology, 14, 344–352. doi: 10.1080/10413200290103608.CrossRefGoogle Scholar
  60. Masten, A. S. (2001). Ordinary magic: Resilience processes in development. The American Psychologist, 56, 227–238. doi: 10.1037/0003-066X.56.3.227.PubMedCrossRefGoogle Scholar
  61. McDonald, R. P., & Marsh, H. W. (1990). Choosing a multivariate model: Noncentrality and goodness-of-fit. Psychological Bulletin, 107, 247–255. doi: 10.1037/0033-2909.107.2.247.CrossRefGoogle Scholar
  62. Meece, J. L., Wigfield, A., & Eccles, J. S. (1990). Predictors of mathematics anxiety and its influence on young adolescents’ course enrolment intentions and performance in mathematics. Journal of Educational Psychology, 82, 60–70. doi: 10.1037/0022-0663.82.1.60.CrossRefGoogle Scholar
  63. O’Mara, A. J., Marsh, H. W., Craven, R. G., & Debus, R. (2006). Do self-concept interventions make a difference? A synergistic blend of construct validation and meta-analysis. Educational Psychologist, 41, 181–206. doi: 10.1207/s15326985ep4103_4.CrossRefGoogle Scholar
  64. Richardson, P. W., & Watt, H. M. G. (2006). Who chooses teaching and why? Profiling characteristics and motivation across three Australian institutions. Asia-Pacific Journal of Teacher Education, 34, 27–56. doi: 10.1080/13598660500480290.CrossRefGoogle Scholar
  65. Richter, F. F. F. D., & Tjosvold, D. (1980). Effects of student participation in classroom decision making on attitudes, peer interaction, motivation and learning. The Journal of Applied Psychology, 65, 74–80. doi: 10.1037/0021-9010.65.1.74.CrossRefGoogle Scholar
  66. Schumacker, R. E., & Lomax, R. G. (1996). A beginner’s guide to structural equation modeling. Mahwah, NJ: Erlbaum.Google Scholar
  67. Shin, N. (2006). Online learner’s ‘flow’ experience: An empirical study. British Journal of Educational Technology, 37, 705–720. doi: 10.1111/j.1467-8535.2006.00641.x.CrossRefGoogle Scholar
  68. Williams, L. J., Ford, L. R., & Nguyen, N. (2002). Basic and advanced measurement models for confirmatory factor analysis. In S. G. Rogelberg (Ed.), Handbook of research methods in industrial and organizational psychology (pp. 366–389). Oxford, UK: Blackwell.Google Scholar
  69. Wrigley, W. J. (2005). Improving music performance assessment. Unpublished Doctoral Thesis, Griffith University, Brisbane, Australia.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Education and Social WorkUniversity of SydneySydney Australia
  2. 2.School of Human Movement StudiesUniversity of Queensland St. Lucia Australia

Personalised recommendations