Skip to main content

Advertisement

Log in

A novel pregnene analogs: synthesis, cytotoxicity on prostate cancer of PC-3 and LNCPa-AI cells and in silico molecular docking study

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

New pregnene analogs of N-hydroxamic acid 6, imino-propane hydrazides 7 and 8 as well as the aryl amides 911, oxadiazole, pyrazole and sulfinyl analogs 1315, via the hydrazide analog 5 of methyl ((5-pregnen-3β,17β-diol-15α-yl)thio)propanoate (4) were synthesized. The in vitro cytotoxic activities of selected synthesized steroids against two human prostate cancer cell lines (PC-3, and LNCaP-AI) were evaluated by MTT assay. Compound 10 was the most active cytotoxic agent among these steroids against PC-3 and LNCaP-AI cell lines with inhibition of 96.2%, and 93.6% at concentration levels of 10.0 μM and 91.8%, and of 79.8% at concentration of 1.0 μM, respectively. Molecular docking study of 10 showed a hydrogen bonding with the amino acid Asn705 residue of the receptor 1E3G, together with hydrophobic interactions. Therefore, compound 10 can be considered as a promising anticancer agent due to its potent cytotoxic activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics 2008. Cancer J Clin 58:71–96. https://doi.org/10.3322/CA.2007.0010

    Article  Google Scholar 

  2. Suzuki H, Ueda T, Ichikawa T, Ito H (2003) Androgen receptor involvement in the progression of prostate cancer. Endocr Relat Cancer 10:209–216

    Article  CAS  Google Scholar 

  3. Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6:76–85. https://doi.org/10.1038/ncpuro1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nevedomskaya E, Baumgart SJ, Haendler B (2018) Recent advances in prostate cancer treatment and drug discovery. Int J Mol Sci 19:1359–1384. https://doi.org/10.3390/ijms19051359

    Article  CAS  PubMed Central  Google Scholar 

  5. Edmondson RJ, Monaghan JM (2001) The epidemiology of ovarian cancer. Int J Gynecol Cancer 11:423–429. https://doi.org/10.1046/j.1525-1438.2001.01053.x

    Article  CAS  PubMed  Google Scholar 

  6. Maria J, Ghini AA, Gerardo B (2003) 6,19-Carbon-bridged steroids. Synthesis of 6,19-methano progesterone. Org Biomol Chem 1:939–943. https://doi.org/10.1039/b211974a

    Article  CAS  Google Scholar 

  7. Leng TD, Zhang JX, Xie J, Zhou SJ, Huang YJ, Zhou YH, Zhu WB, Yan GM (2010) Synthesis and anti-glioma activity of 25(R)-spirostan-3β-5α,6β,19-tetrol. Steroids 75:224–229. https://doi.org/10.1016/j.steroids.2009.12.005

    Article  CAS  PubMed  Google Scholar 

  8. Latham KA, Zamora A, Drought H, Subramanian S, Matejuk A, Offiner H et al (2003) Estradiol treatment redirects the isotope of the autoantibody response and prevents the development of autoimmune arthritis. J Immunnol 171:5820–5827. https://doi.org/10.4049/jimmunol.171.11.5820

    Article  CAS  Google Scholar 

  9. Dubey RK, Oparil S, Imthum B, Jackson EK (2002) Sex hormones and hypertension. Cardiovasc Res 53:688–708. https://doi.org/10.1016/s0008-6363(01)00527-2

    Article  CAS  PubMed  Google Scholar 

  10. Kostaras X, Cusano F, Kline GA, Roa W, Easaw J (2014) Use of dexamethasone in patients with high-grade glioma: a clinical practice guideline. Curr Oncol 21:e493–e503. https://doi.org/10.3747/co.21.1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stanway SJ, Delavault P, Purohit A, Woo LWL, Thurieau C, Potter BVL, Reed MJ (2007) Steroid sulfatase: a new target for the endocrine therapy of breast cancer. Oncologist 12:370–374. https://doi.org/10.1634/theoncologist.12-4-370

    Article  CAS  PubMed  Google Scholar 

  12. Ndibe C, Wang CG, Sonpavde G (2015) Corticosteroids in the management of prostate cancer: a critical review. Curr Treat Options Oncol 16:6. https://doi.org/10.1007/s11864-014-0320-6

    Article  PubMed  Google Scholar 

  13. Cho H, Walker A, Williams J, Hasty KA (2015) Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids. Biomed Res Int 2015:595273. https://doi.org/10.1155/2015/595273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cushman M, Golebiewski WM, Pommier Y, Mazumder A, Reymen D, De Clercq E, Graham L, Rice WG (1995) Cosalane analogues with enhanced potencies as inhibitors of HIV-1 protease and integrase. J Med Chem 38:443–452. https://doi.org/10.1021/jm00003a007

    Article  CAS  PubMed  Google Scholar 

  15. Casimiro-Garcia A, De Clercq E, Pannecouque C, Witvrouw M (2000) Synthesis and anti-HIV activity of cosalane analogues incorporating nitrogen in the linker chain. Bioorg Med Chem 8:191–200. https://doi.org/10.1016/S0968-0896(99)00269-2

    Article  CAS  PubMed  Google Scholar 

  16. Galabov AS, Nikolaeva L, Todorovab D, Milkovab T (1998) Antiviral activity of cholesteryl esters of cinnamic acid derivatives. Z Naturforsch C 53:883–887

    Article  CAS  Google Scholar 

  17. Vasaitis TS, Bruno RD, Njar VCO (2011) CYP17 inhibitors for prostate cancer therapy. J Steroid Biochem Mol Biol 125:23–31. https://doi.org/10.1016/j.jsbmb.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  18. Njar VCO (2000) High-yield synthesis of novel imidazoles and triazoles from alcohols and phenols. Synthesis 14:2019–2028

    Article  Google Scholar 

  19. Moreira VM, Vasaitis TS, Njar VC, Salvador JAR (2007) Synthesis and evaluation of novel 17-indazole androstane derivatives designed as CYP17 inhibitors. Steroids 72:939–948. https://doi.org/10.1016/j.steroids.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  20. Moreira VMA, Salvador JAR, Vasaitis TS, Njar VCO (2008) Synthesis inhibitors for prostate cancer treatment—an update. Curr Med Chem 15:868–899. https://doi.org/10.2174/092986708783955428

    Article  CAS  PubMed  Google Scholar 

  21. Moreira VMA, Vasaitis TS, Guo Z, Njar VCO, Salvador JAR (2008) Synthesis of novel C17 steroidal carbamates, studies on CYP17 action, androgen receptor binding and function, and prostate cancer cell growth. Steroids 73:1217–1227. https://doi.org/10.1016/j.steroids.2008.05.010

    Article  CAS  PubMed  Google Scholar 

  22. Owen CP (2009) 17α-hydroxylase/17,20-lyase (p450(17α)) inhibitors in the treatment of prostate cancer: a review. Anticancer Agents Med Chem 9:613–626. https://doi.org/10.2174/187152009788680046

    Article  CAS  PubMed  Google Scholar 

  23. Hartmann RW, Ehmer RW, Haidar S, Hector M, Jose J, Klein CD, Seidel SB, Sergejew TF, Wachall BG, Wächter GA, Zhuang Y (2002) Review: inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Arch Pharm Pharm Med Chem 335:119–128. https://doi.org/10.1002/1521-4184(200204)335:4%3c119:AID-ARDP119%3e3.0.CO;2

    Article  CAS  Google Scholar 

  24. Hu Q, Negri M, Olgen S, Hartmann RW (2010) The role of fluorine Substitution in biphenyl methylene imidazole type CYP17 inhibitors for the treatment of prostate carcinoma. ChemMedChem 5:899–910. https://doi.org/10.1002/cmdc.201000065

    Article  CAS  PubMed  Google Scholar 

  25. Haidar S, Ehmer PB, Barassin S, Batzl-Hartmann C, Hartmann RW (2003) Effects of novel 17 α-hydroxylase/C17, 20-lyase (P450 17, CYP 17) inhibitors on androgen biosynthesis in vitro and in vivo. J Steroid Biochem Mol Biol 84:555–562. https://doi.org/10.1016/s0960-0760(03)00070-0

    Article  CAS  PubMed  Google Scholar 

  26. Al-Masoudi NA, Abdul-Rida NA, Kadhim RA, Krugs SJ, Engels M, Saeed BA (2016) Synthesis and CYP17a hydroxylase inhibition activity of new 3α- and 3β-ester derivatives of pregnenolone and related ether analogues. Med Chem Res 25:310–321. https://doi.org/10.1007/s00044-015-1480-z

    Article  CAS  Google Scholar 

  27. Al-Masoudi NA, Kadhim RA, Abdul-Rida NA, Saeed BA, Engel M (2015) New biaryl-chalcone derivatives of pregnenolone via Suzuki–Miyaura cross-coupling reaction. Synthesis, CYP17 hydroxylase inhibition activity, QSAR, and molecular docking study. Steroids 101:43–50. https://doi.org/10.1016/j.steroids.2015.05.011

    Article  CAS  PubMed  Google Scholar 

  28. Njar VC, Brodie AM (1999) Inhibitors of 17alpha-hydroxylase/17,20-lyase (CYP17): potential agents for the treatment of prostate cancer. Curr Pharm Des 5:163–180

    CAS  PubMed  Google Scholar 

  29. Banday AH, Shameem SA, Gupta BD, Kumar HMS (2010) D-ring substituted 1,2,3-triazolyl 20-keto pregnenanes as potential anticancer agents: synthesis and biological evaluation. Steroids 75:801–804. https://doi.org/10.1016/j.steroids.2010.02.015

    Article  CAS  PubMed  Google Scholar 

  30. Al-Masoudi NA, Mahdi KM, Abdul-Rida NA, Saeed BA, Engel M (2015) A new pregnenolone analogues as privileged scaffolds in inhibition of CYP17 hydroxylase enzyme. Synthesis and in silico molecular docking study. Steroids 100:52–59. https://doi.org/10.1016/j.steroids.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  31. Al-Masoudi NA, Ali DS, Saeed B, Hartmann RW, Engel M, Rashid S, Saeed A (2014) New CYP17 hydroxylase inhibitors: synthesis, biological evaluation, QSAR, and molecular docking study of new pregnenolone analogs. Arch Pharm Chem Life Sci 347:896–907. https://doi.org/10.1002/ardp.201400255

    Article  CAS  Google Scholar 

  32. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al (2011) Abiraterone and increased survival in metastatic prostate cancer. Engl J Med 364:1995–2005. https://doi.org/10.1056/NEJMoa1014618

    Article  Google Scholar 

  33. Bryce A, Ryan CJ (2012) Development and clinical utility of abiraterone acetate as an androgen synthesis inhibitor. Clin Pharmacol Ther 91:101–108. https://doi.org/10.1038/clpt.2011.275

    Article  CAS  PubMed  Google Scholar 

  34. Handratta VD, Jelovac D, Long BJ, Kataria R, Nnane IP, Njar VC, Brodie AM (2004) Potent CYP17 inhibitors: Improved syntheses, pharmacokinetics and antitumor activity in the LNCaP human prostate cancer model. J Steroid Biochem Mol Biol 92:155–165. https://doi.org/10.1016/j.jsbmb.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  35. Handratta VD, Vasaitis TS, Njar VC, Gediya LK, Kataria R, Chopra P et al (2005) Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J Med Chem 48:2972–2984. https://doi.org/10.1021/jm040202w

    Article  CAS  PubMed  Google Scholar 

  36. Brodie A, Njar VC (2006). Novel C-17-heteroaryl steroidal CYP17 inhibitors/antian-drogens: synthesis, in vitro biological activities, pharmacokinetics and antitumor activity. WO Patent 093993

  37. Ligr M, Li Y, Logan SK, Taneja S, Melamed J, Lepor H, Garabedian MJ, Lee P (2012) Mifepristone inhibits GRβ-coupled prostate cancer cell proliferation. J Urol 188:981–988. https://doi.org/10.1016/j.juro.2012.04.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilt TJ, Macdonald R, Hagerty K, Schellhammer P, Tacklind J, Somerfield MR, Kramer BS (2010) 5-α-Reductase inhibitors for prostate cancer chemoprevention: an updated Cochrane systematic review. BJU Int 106:1444–1451

    Article  CAS  Google Scholar 

  39. Bologna M, Muzi P, Biordi L, Festuccia C, Vicentini C (1995) Finasteride dose-dependently reduces the proliferation rate of the LNCaP human prostatic cancer cell line in vitro. Urology 45:282–290. https://doi.org/10.1016/0090-4295(95)80019-0

    Article  CAS  PubMed  Google Scholar 

  40. Al-Masoudi NA, Sami A, Abdul-Rida NA, Fortscher M (2018) New cholic acid analogs: synthesis and 17β-hydroxydehydrogenase (17β-HSD) inhibition activity. Z Naturforsch B 73:211–223. https://doi.org/10.1515/znb-2018-0192

    Article  CAS  Google Scholar 

  41. Mahdi KM, Abdul-Rida NA, Al-Masoudi NA (2015) Exploration of new 3α-pregnenolone ester analogues via Mitsunobu reaction, their anti-HIV activity and molecular modeling study. Euro J Chem 6:1–7. https://doi.org/10.5155/eurjchem.6.1.1-7.1139

    Article  CAS  Google Scholar 

  42. Willker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Gradient selection in inverse heteronuclear correlation spectroscopy. Magn Reson Chem 31:287–292. https://doi.org/10.1002/mrc.1260310315

    Article  CAS  Google Scholar 

  43. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  44. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller DR, Tzeng C-C, Farmer T, Keller ET, Caplan S, Chen Y-S, Chen T-L, Lin M-F (2018) Novel CIL-102 derivatives as potential therapeutic agents for docetaxel-resistant prostate cancer. Cancer Lett 436:96–108. https://doi.org/10.1016/j.canlet.2018.07.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We evok the spirit of Prof. W. Pfleiderer of chemistry department, University of Konstanz, Germany for providing the starting material (steroid 4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najim A. Al-Masoudi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2617 kb)

Supplementary material 2 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul-Rida, N.A., Farhan, A.M., Al-Masoudi, N.A. et al. A novel pregnene analogs: synthesis, cytotoxicity on prostate cancer of PC-3 and LNCPa-AI cells and in silico molecular docking study. Mol Divers 25, 661–671 (2021). https://doi.org/10.1007/s11030-020-10038-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10038-w

Keywords

Navigation