Advertisement

Electro-organic synthesis of tetrahydroimidazo[1,2-a]pyridin-5(1H)-one via a multicomponent reaction

  • Mohammad Reza Asghariganjeh
  • Ali Asghar MohammadiEmail author
  • Elham Tahanpesar
  • Ayeh Rayatzadeh
  • Somayeh Makarem
Short Communication

Abstract

Electro-synthesis through a one-pot three-component condensation of corresponding aldehydes, Meldrum’s acid, and 2-(nitromethylene)imidazolidine resulted in a series of novel tetrahydroimidazo[1,2-a]pyridine-5(1H)-one derivatives containing an electronegative pharmacophore (=CNO2). The process was carried out in propanol medium with sodium bromide presented as electrolyte, inside an undivided cell with good to excellent yields. As a powerful entry into fused polycyclic structures related to bioactive heterocycles, this green protocol shows great potential.

Graphic abstract

Keywords

Electro-organic synthesis Imidazo[1,2-a]pyridine Multicomponent reaction 2-(Nitromethylene)imidazolidine Meldrum’s acid 

Notes

Supplementary material

11030_2019_10029_MOESM1_ESM.doc (9.7 mb)
Supplementary material 1 (DOC 9978 kb)

References

  1. 1.
    Kollmeyer WD, Flattum RF, Foster JP, Powell JE, Schroeder ME, Soloway SB (1999) Discovery of the nitromethylene heterocycle insecticides. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 71–89.  https://doi.org/10.1007/978-4-431-67933-2_3 CrossRefGoogle Scholar
  2. 2.
    Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58(4):200–215.  https://doi.org/10.1002/arch.20043 CrossRefPubMedGoogle Scholar
  3. 3.
    Rauch N, Nauen R (2003) Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 54(4):165–176.  https://doi.org/10.1002/arch.10114 CrossRefPubMedGoogle Scholar
  4. 4.
    Langer SZ, Arbilla S, Benavides J, Scatton B (1990) Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv Biochem Psychopharmacol 46:61–72PubMedGoogle Scholar
  5. 5.
    Ueda T, Mizushige K, Yukiiri K, Takahashi T, Kohno M (2003) Improvement of cerebral blood flow by olprinone, a phosphodiesterase-3 inhibitor, in mild heart failure. Cerebrovasc Dis 16(4):396–401.  https://doi.org/10.1159/000072563 CrossRefPubMedGoogle Scholar
  6. 6.
    Swainston Harrison T, Keating GM (2005) Zolpidem: a review of its use in the management of insomnia. CNS Drugs 19(1):65–89.  https://doi.org/10.2165/00023210-200519010-00008 CrossRefPubMedGoogle Scholar
  7. 7.
    Martínez-Urbina MA, Zentella A, Vilchis-Reyes MA, Guzmán A, Vargas O, Ramírez Apan MT, Ventura Gallegos JL, Díaz E (2010) 6-Substituted 2-(N-trifluoroacetylamino)imidazopyridines induce cell cycle arrest and apoptosis in SK-LU-1 human cancer cell line. Eur J Med Chem 45(3):1211–1219.  https://doi.org/10.1016/j.ejmech.2009.11.049 CrossRefPubMedGoogle Scholar
  8. 8.
    Mavel S, Renou JL, Galtier C, Allouchi H, Snoeck R, Andrei G, De Clercq E, Balzarini J, Gueiffier A (2002) Influence of 2-substituent on the activity of imidazo[1,2-a] pyridine derivatives against human cytomegalovirus. Bioorg Med Chem 10(4):941–946.  https://doi.org/10.1016/S0968-0896(01)00347-9 CrossRefPubMedGoogle Scholar
  9. 9.
    Kaminski JJ, Doweyko AM (1997) Antiulcer agents. 6. Analysis of the in vitro biochemical and in vivo gastric antisecretory activity of substituted imidazo[1,2-a]pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies. J Med Chem 40(4):427–436.  https://doi.org/10.1021/jm950700s CrossRefPubMedGoogle Scholar
  10. 10.
    Saxena AK, Schaper KJ (2006) QSAR analysis of the time- and dose-dependent anti-inflammatory in vivo activity of substituted imidazo[1,2-a]pyridines using artificial neural networks. QSAR Comb Sci 25(7):590–597.  https://doi.org/10.1002/qsar.200510175 CrossRefGoogle Scholar
  11. 11.
    Bollini M, Casal JJ, Alvarez DE, Boiani L, González M, Cerecetto H, Bruno AM (2009) New potent imidazoisoquinolinone derivatives as anti-Trypanosoma cruzi agents: biological evaluation and structure–activity relationships. Bioorg Med Chem 17(4):1437–1444.  https://doi.org/10.1016/j.bmc.2009.01.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Wiegand MH (2008) Antidepressants for the treatment of insomnia: a suitable approach? Drugs 68(17):2411–2417.  https://doi.org/10.2165/0003495-200868170-00001 CrossRefPubMedGoogle Scholar
  13. 13.
    Rupert KC, Henry JR, Dodd JH, Wadsworth SA, Cavender DE, Olini GC, Fahmy B, Siekierka JJ (2003) Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 13(3):347–350.  https://doi.org/10.1016/S0960-894X(02)01020-X CrossRefPubMedGoogle Scholar
  14. 14.
    Rival Y, Grassy G, Michel G (1992) Synthesis and antibacterial activity of some imidazo[l,2-a]pyrimidine derivatives. Chem Pharm Bull 40(5):1170–1176.  https://doi.org/10.1248/cpb.40.1170 CrossRefPubMedGoogle Scholar
  15. 15.
    Chaouni-Benabdallah A, Galtier C, Allouchi H, Kherbeche A, Debouzy JC, Teulade JC, Chavignon O, Witvrouw M, Pannecouque C, Balzarini J, De Clercq E, Enguehard C, Gueiffier A (2001) Synthesis of 3-nitrosoimidazo[1,2-a]pyridine derivatives as potential antiretroviral agents. Arch Pharm 334(7):224–228.  https://doi.org/10.1002/1521-4184(200107)334:7%3c224:AID-ARDP224%3e3.0.CO;2-7 CrossRefGoogle Scholar
  16. 16.
    Budumuru P, Golagani S, Kantamreddi VSS (2018) Design and synthesis of novel imidazo[1,2-a]pyridine derivatives and their anti-bacterial activity. Asian J Pharm Clin Res 11(8):252–258.  https://doi.org/10.22159/ajpcr.2018.v11i8.26241 CrossRefGoogle Scholar
  17. 17.
    An W, Wang W, Yu T, Zhang Y, Miao Z, Meng T, Shen J (2016) Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents. Eur J Med Chem 112:367–372.  https://doi.org/10.1016/j.ejmech.2016.02.004 CrossRefPubMedGoogle Scholar
  18. 18.
    Garamvölgyi R, Dobos J, Sipos A, Boros S, Illyés E, Baska F, Kékesi L, Szabadkai I, Szántai-Kis C, Kéri G, Örfi L (2016) Design and synthesis of new imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells. Eur J Med Chem 108:623–643.  https://doi.org/10.1016/j.ejmech.2015.12.001 CrossRefPubMedGoogle Scholar
  19. 19.
    Fan YH, Li W, Liu DD, Bai MX, Song HR, Xu YN, Lee S, Zhou ZP, Wang J, Ding HW (2017) Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors. Eur J Med Chem 139:95–106.  https://doi.org/10.1016/j.ejmech.2017.07.074 CrossRefPubMedGoogle Scholar
  20. 20.
    Allahabadi E, Ebrahimi S, Soheilizad M, Khoshneviszadeh M, Mahdavi M (2017) Copper-catalyzed four-component synthesis of imidazo[1,2-a]pyridines via sequential reductive amination, condensation, and cyclization. Tetrahedron Lett 58(2):121–124.  https://doi.org/10.1016/j.tetlet.2016.11.081 CrossRefGoogle Scholar
  21. 21.
    Devi N, Singh D, Kaur G, Mor S, Putta VPRK, Polina S, Malakar CC, Singh V (2017) In(OTf)3 assisted synthesis of β-carboline C-3 tethered imidazo[1,2-a]azine derivatives. New J Chem 41(3):1082–1093.  https://doi.org/10.1039/c6nj03210a CrossRefGoogle Scholar
  22. 22.
    Cui Z, Zhu B, Li X, Cao H (2018) Access to sulfonylated furans or imidazo[1,2-: A] pyridines via a metal-free three-component, domino reaction. Org Chem Front 5(14):2219–2223.  https://doi.org/10.1039/c8qo00443a CrossRefGoogle Scholar
  23. 23.
    Reynoso Lara JE, Salgado-Zamora H, Bazin MA, Campos-Aldrete ME, Marchand P (2018) Design and synthesis of imidazo[1,2-a]pyridines with carboxamide group substitution and in silico evaluation of their interaction with a LuxR-type quorum sensing receptor. J Heterocycl Chem 55(5):1101–1111.  https://doi.org/10.1002/jhet.3140 CrossRefGoogle Scholar
  24. 24.
    Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89.  https://doi.org/10.1021/cr0505728 CrossRefPubMedGoogle Scholar
  25. 25.
    Karimi AR, Sedaghatpour F (2010) Novel mono- and bis(spiro-2-amino-4 H -pyrans): alum-catalyzed reaction of 4-hydroxycoumarin and malononitrile with isatins, quinones, or ninhydrin. Synthesis 10:1731–1735.  https://doi.org/10.1055/s-0029-1219748 CrossRefGoogle Scholar
  26. 26.
    Alizadeh A, Zohreh N (2012) A unique approach to catalyst-free, one-pot synthesis of spirooxindole-pyrazolines. Synlett 3:428–432.  https://doi.org/10.1055/s-0031-1290322 CrossRefGoogle Scholar
  27. 27.
    Wang R, Liu ZQ (2013) Ugi multicomponent reaction product: the inhibitive effect on DNA oxidation depends upon the isocyanide moiety. J Org Chem 78(17):8696–8704.  https://doi.org/10.1021/jo401426n CrossRefPubMedGoogle Scholar
  28. 28.
    Yavari I, Pashazadeh R, Hosseinpour R, Ghanbari E (2013) Nef-isocyanide adducts as useful synthons in a novel synthesis of functionalized 5-imino-2-thioxothiazolidines. Tetrahedron Lett 54(22):2785–2787.  https://doi.org/10.1016/j.tetlet.2013.03.041 CrossRefGoogle Scholar
  29. 29.
    Akbarzadeh R, Amanpour T, Bazgir A (2014) Synthesis of 3-oxo-1,4-diazepine-5-carboxamides and 6-(4-oxo-chromen-3-yl)-pyrazinones via sequential Ugi 4CC/Staudinger/intramolecular nucleophilic cyclization and Ugi 4CC/Staudinger/aza-Wittig reactions. Tetrahedron 70(43):8142–8147.  https://doi.org/10.1016/j.tet.2014.07.102 CrossRefGoogle Scholar
  30. 30.
    Shaabani A, Hooshmand SE (2016) Isocyanide and Meldrum’s acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Adv 6(63):58142–58159.  https://doi.org/10.1039/c6ra11701e CrossRefGoogle Scholar
  31. 31.
    Pair E, Berini C, Noël R, Sanselme M, Levacher V, Brière JF (2014) Organocatalysed multicomponent synthesis of pyrazolidinones: Meldrum’s acid approach. Chem Commun 50(71):10218–10221.  https://doi.org/10.1039/c4cc04852k CrossRefGoogle Scholar
  32. 32.
    Lipson VV, Gorobets NY (2009) One hundred years of Meldrum’s acid: advances in the synthesis of pyridine and pyrimidine derivatives. Mol Divers 13(4):399–419.  https://doi.org/10.1007/s11030-009-9136-x CrossRefPubMedGoogle Scholar
  33. 33.
    Huang CH, Liu YL (2019) The Michael addition reaction of Meldrum’s acid (MA): an effective route for the preparation of reactive precursors for MA-based thermosetting resins. Polym Chem 10(15):1873–1881.  https://doi.org/10.1039/c8py01643g CrossRefGoogle Scholar
  34. 34.
    Krylov CS, Komogortsev AN, Lichitsky BV, Fakhrutdinov AN, Dudinov AA, Krayushkin MM (2019) Three-component condensation of 4-imino-1-phenylimidazolidin-2-one with aldehydes and Meldrum’s acid: synthesis of imidazo[4,5-b]pyridine-2,5(4H,6H)-diones and 5-substituted 1-phenylhydantoins. Chem Heterocycl Compd 55(9):851–855.  https://doi.org/10.1007/s10593-019-02548-9 CrossRefGoogle Scholar
  35. 35.
    Lichitsky BV, Tretyakov AD, Komogortsev AN, Mityanov VS, Dudinov AA, Gorbunov YO, Daeva ED, Krayushkin MM (2019) Synthesis of substituted benzofuran-3-ylacetic acids based on three-component condensation of polyalkoxyphenols, arylglyoxals and Meldrum’s acid. Mendeleev Commun 29(5):587–588.  https://doi.org/10.1016/j.mencom.2019.09.037 CrossRefGoogle Scholar
  36. 36.
    Suresh M, Kumari A, Singh RB (2019) A transition metal free expedient approach for the C[dbnd]C bond cleavage of arylidene Meldrum’s acid and malononitrile derivatives. Tetrahedron.  https://doi.org/10.1016/j.tet.2019.130573 CrossRefGoogle Scholar
  37. 37.
    Mishra S, Aponick A (2019) Lactone synthesis by enantioselective orthogonal tandem catalysis. Angew Chem Int Ed 58(28):9485–9490.  https://doi.org/10.1002/anie.201904438 CrossRefGoogle Scholar
  38. 38.
    Yu CY, Yang PH, Zhao MX, Huang ZT (2006) A novel one-pot reaction of heterocyclic ketene aminals: synthesis of a small library of tetrahydropyridinone-fused 1,3-diazaheterocycles. Synlett 12:1835–1840.  https://doi.org/10.1055/s-2006-947343 CrossRefGoogle Scholar
  39. 39.
    Yoshida JI, Kataoka K, Horcajada R, Nagaki A (2008) Modern strategies in electroorganic synthesis. Chem Rev 108(7):2265–2299.  https://doi.org/10.1021/cr0680843 CrossRefPubMedGoogle Scholar
  40. 40.
    Mohammadi AA, Taheri S, Amini A, Ahdenov R (2018) Synthesis of some new triamide derivatives via Ugi five-component reaction in aqueous solution. Mol Divers.  https://doi.org/10.1007/s11030-018-9846-z CrossRefPubMedGoogle Scholar
  41. 41.
    Mohammadi AA, Taheri S, Amouzegar A, Ahdenov R, Halvagar MR, Sadr AS (2017) Diastereoselective synthesis and molecular docking studies of novel fused tetrahydropyridine derivatives as new inhibitors of HIV protease. J Mol Struct 1139:166–174.  https://doi.org/10.1016/j.molstruc.2017.03.029 CrossRefGoogle Scholar
  42. 42.
    Azizian J, Mohammadi AA, Karimi AE, Mohammadizadeh MR (2005) A stereoselective three-component reaction: KAl(SO4)2·12H2O, an efficient and reusable catalyst for the one-pot synthesis of cis-isoquinolonic acids. J Org Chem 70(1):350–352.  https://doi.org/10.1021/jo049138g CrossRefPubMedGoogle Scholar
  43. 43.
    Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 3-hydroxy-3-(1H-indol-3-yl)indolin-2-one derivatives. Monatsh Chem 143(8):1157–1160.  https://doi.org/10.1007/s00706-011-0693-1 CrossRefGoogle Scholar
  44. 44.
    Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 2-amino-pyranes. Ind Eng Chem Res 51(5):2200–2204.  https://doi.org/10.1021/ie200997b CrossRefGoogle Scholar
  45. 45.
    Makarem S, Mohammadi AA, Fakhari AR (2008) A multi-component electro-organic synthesis of 2-amino-4H-chromenes. Tetrahedron Lett 49(50):7194–7196.  https://doi.org/10.1016/j.tetlet.2008.10.006 CrossRefGoogle Scholar
  46. 46.
    Sayyar R, Makarem S, Mirza B (2019) Organic electrosynthesis as a new facile and green method for one-pot synthesis of nanosized particles of octahydro-imidazo[1,2-a]quinolin-6-one derivatives via a multicomponent reaction. J Heterocycl Chem 56(6):1839–1843.  https://doi.org/10.1002/jhet.3562 CrossRefGoogle Scholar
  47. 47.
    Makarem S, Fakhari AR, Mohammadi AA (2015) Electro-organic synthesis: an efficient method for the preparation of nanosized particles of phthalazine derivatives via one-pot multicomponent reactions. Anal Bioanal Chem Res 2(2):85–89.  https://doi.org/10.22036/abcr.2015.10300 CrossRefGoogle Scholar
  48. 48.
    Mohammadi AA, Makarem S, Ahdenov R, Notash NA (2019) Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction. Mol Divers.  https://doi.org/10.1007/s11030-019-09979-8 CrossRefPubMedGoogle Scholar
  49. 49.
    Movahed SK, Dabiri M, Bazgir A (2013) An efficient one-pot four-component synthesis of functionalized imidazo[1,2-a]pyridines. Helv Chim Acta 96(3):525–532.  https://doi.org/10.1002/hlca.201200231 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Chemistry, Khuzestan Science and Research BranchIslamic Azad UniversityAhvazIran
  2. 2.Department of Chemistry, Ahvaz BranchIslamic Azad UniversityAhvazIran
  3. 3.Chemistry and Chemical Engineering Research Center of Iran (CCERCI)TehranIran
  4. 4.Department of Chemistry, Karaj BranchIslamic Azad UniversityKarajIran

Personalised recommendations