Expedient synthesis of novel antibacterial hydrazono-4-thiazolidinones under catalysis of a natural-based binary ionic liquid

  • 9 Accesses


A library of pyran-2H-one-3-ylmethylidene and chromene-2H-one-3-ylmethylidene derivatives of the titled heterocyclic framework was synthesized from 3-acyl-4-hydroxypyran/chromene-2H-one via sequential reaction with thiosemicarbazide and dialkyl acetylenedicarboxylates. The syntheses were carried out under efficient catalysis of a new binary ionic liquid mixture [l-prolinium chloride][1-methylimidazolium-3-sulfonate] in one pot and solvent-free conditions. Calculations based on density functional theory displayed that the barrier energy for interconversion of the two possible diastereomeric isomers of each product is less than the thermal energy of molecules at room temperature, as only one product can be resolved from a given reaction mixture. This seems to be the case for the previously reported hydrazonothiazolidines. The binary ionic liquid mixture melts at near room temperature and can be considered as a solution of HCl in 1:1 mixture of two zwitterionic species. It proved to be more efficient than its constituents in catalyzing the above synthesis in one-pot operation. Some of the synthesized products have shown pronounced antibacterial activities. The ionic liquid is virtually stable in air and moisture, as can be retrieved several times without appreciable decrease in its catalytic activity.

Graphic abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5



Ionic liquid


Binary ionic liquid




1-Methyl-3-sulfonylimidazolium chloride




l-Prolinium chloride

DMSO-d 6 :

Hexadeuterated dimethylsulfoxide


para-Toluenesulfonic acid




Density functional theory


  1. 1.

    Swain CG, Ohno A, Roe DK, Brown R, Maugh T II (1967) Tetrahexylammonium benzoate, a liguid salt at, a solvent for kinetics or electrochemistry. J Am Chem Soc 89:2648–2649.

  2. 2.

    Boon JA, Levisky JA, Pflug JL, Wilkes JS (1986) Friedel–Crafts reactions in ambient-temperature molten salts. J Org Chem 51:480–483.

  3. 3.

    Singh H, Kumari S, Khurana JM (2014) A new green approach for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives using task specific acidic ionic liquid [NMP]H2PO4. Chin Chem Lett 25:1336–1340.

  4. 4.

    Tawfik SM (2016) Ionic liquids based gemini cationic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution. J Mol Liq 216:624–635.

  5. 5.

    Yadav JS, Reddy BVS, Baishya G, Reddy KV, Narsaiah AV (2005) Conjugate addition of indoles to α, β-unsaturated ketones using Cu(OTf)2 immobilized in ionic liquids. Tetrahedron 61:9541–9544.

  6. 6.

    Rad-Moghadam K, Azimi SC (2012) Mg(BF4)2 doped in [BMIm][BF4]: a homogeneous ionic liquid-catalyst for efficient synthesis of 1,8-dioxo-octahydroxanthenes, decahydroacridines and 14-aryl-14H-dibenzo[a, j]xanthenes. J Mol Catal A Chem 363–364:465–469.

  7. 7.

    Toorchi Roudsari S, Rad-Moghadam K (2018) A sulfonating ionic liquid for one-pot pseudo four-component synthesis of novel 3-chlorosulfonyl-δ-sultones: a novel class of fluorescent compounds. Tetrahedron 74:4047–4052.

  8. 8.

    Rad-Moghadam K, Mousazadeh Hassani SAR, Toorchi Roudsari S (2016) N-methyl-2-pyrrolidonium chlorosulfonate: an efficient ionic-liquid catalyst and mild sulfonating agent for one-pot synthesis of δ-sultones. J Mol Liq 218:275–280.

  9. 9.

    Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60.

  10. 10.

    Zhang X, Li X, Fan X, Wang X, Li D, Qu G, Wang J (2009) Ionic liquid promoted preparation of 4H-thiopyran and pyrimidine nucleoside-thiopyran hybrids through one-pot multi-component reaction of thioamide. Mol Divers 13:57.

  11. 11.

    Khazaei A, Zolfigol MA, Moosavi-Zare AR, Afsar J, Zare A, KhakyzadehV Beyzavi MH (2013) Synthesis of hexahydroquinolines using the new ionic liquid sulfonic acid functionalized pyridinium chloride as a catalyst. Chin J Catal 34:1936–1944.

  12. 12.

    Rad-Moghadam K, Sharifi-Kiasaraie M, Taheri-Amlashi H (2010) Synthesis of symmetrical and unsymmetrical 3,3-di(indolyl)indolin-2-ones under controlled catalysis of ionic liquids. Tetrahedron 66:2316–2321.

  13. 13.

    Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426.

  14. 14.

    Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110.

  15. 15.

    Thomazeau C, Oliver-Bourbigou H, Magna L, Luts S, Gilbert B (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125:5264–5265.

  16. 16.

    Hagiwara R, Ito Y (2000) Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J Fluor Chem 105:221–227.

  17. 17.

    Xiao Y, Huang X (2018) The physicochemical properties of a room-temperature liquidus binary ionic liquid mixture of [HNMP][CH3SO3]/[Bmim]Cl and its application for fructose conversion to 5-hydroxymethylfurfural. RSC Adv 8:18784–18791.

  18. 18.

    Thawarkar S, Khupse ND, Shinde DR, Kumar A (2019) Understanding the behavior of mixtures of protic-aprotic and protic-protic ionic liquids: conductivity, viscosity, diffusion coefficient and ionicity. J Mol Liq 276:986–994.

  19. 19.

    Kalurazi SY, Rad-Moghadam K, Moradi S (2017) Efficient catalytic application of a binary ionic liquid mixture in the synthesis of novel spiro[4H-pyridine-oxindoles]. New J Chem 41:10291–10298.

  20. 20.

    Sone H, Kondo T, Kiryu M, Ishiwata H, Ojika M, Yamada K (1995) Dolabellin, a cytotoxic bisthiazole metabolite from the sea hare dolabella auricularia: structural determination and synthesis. J Org Chem 60:4774–4781.

  21. 21.

    Sasse F, Sieinmetz H, Heil J, Höfle G, Reichenbach H (2000) Tubulysins, new cytostatic peptides from myxobacteria acting on microtubule. J Antibiot 53:879–885.

  22. 22.

    Xie W, Wu Y, Zhang J, Mei Q, Zhang Y, Zhu N, Liu R, Zhang H (2018) Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur J Med Chem 145:35–40.

  23. 23.

    Archana A, Srivastava VK, Kumar A (2002) Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents. Eur J Med Chem 37:873–882.

  24. 24.

    Agarwal A, Lata S, Saxena KK, Srivastava VK, Kumar A (2006) Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids. Eur J Med Chem 41:1223–1229.

  25. 25.

    Gundlewad GB, Patil BR (2018) Synthesis and evaluation of some novel 2-amino-4-aryl thiazoles for antitubercular activity. J Heterocycl Chem 55:769–774.

  26. 26.

    Hargrave KD, Hess FK, Oliver JT (1983) N-(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J Med Chem 26:1158–1163.

  27. 27.

    Ergenc N, Capan G, Günay NS, Özkirimli S, Güngör M, Özbey S, Kendi E (1999) Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch Pharm 332:343–347.;2-0

  28. 28.

    Jaen JC, Wise LD, Caprathe BW, Tecle H, Bergmeier S, Humblet CC, Heffner TG, Meltzner LT, Pugsley TA (1990) 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J Med Chem 33:311–317.

  29. 29.

    Saroha M, Khurana JM (2019) Acetic acid mediated regioselective synthesis of 2,4,5-trisubstituted thiazoles by a domino multicomponent reaction. New J Chem 43:8644–8650.

  30. 30.

    Zhang H (2014) A novel one-pot multicomponent enzymatic synthesis of 2,4-disubstituted thiazoles. Catal Lett 144:928–934.

  31. 31.

    Nirwan S, Chahal V, Kakkar R (2019) Thiazolidinones: synthesis, reactivity, and their biological applications. J Heterocycl Chem 56:1239–1253.

  32. 32.

    Lobo HR, Singh BS, Shankarling GS (2012) Lipase and deep eutectic mixture catalyzed efficient synthesis of thiazoles in water at room temperature. Catal Lett 142:1369–1375.

  33. 33.

    Goel A, Ram VJ (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 65:7865–7913.

  34. 34.

    Suzuki K, Kuwahara A, Nishikiori T, Nakagawa T (1997) NF00659A1, A2, A3, B1 and B2, novel antitumor antibiotics produced by Aspergillus sp. NF 00659. J Antibiot 50:318–324.

  35. 35.

    Irschik H, Gerth K, Hofle G, Kohl W, Reichenbach H (1983) The myxopyronins, new inthibitors of bacterial RNA synthesis from myxococcus fulvus (myxobacterales). J Antibiot 36:1651–1658.

  36. 36.

    Smyth T, Ramachandran VN, Smyth WF (2009) A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int J Antimicrob Agents 33:421–426.

  37. 37.

    Ollinger P, Wolfbeis OS, Junek H (1975) Darstellung, E/Z-isomerie and gehinderte rotation an N-substituierten aminomethylen-chromandionen,-pyrandionen and-pyridindionen. Monatsh Chem 106:963–971.

  38. 38.

    Liao Y-X, Kuo P-Y, Yang D-Y (2003) Efficient synthesis of trisubstituted [1]benzopyrano[4,3-b]pyrrol-4(1H)-one derivatives from 4-hydroxycoumarin. Tetrahedron Lett 44:1599–1602.

  39. 39.

    Raghuvanshi DS, Singh KN (2010) An efficient protocol for multicomponent synthesis of spirooxindoles employing l-proline as catalyst at room temperature. J Heterocycl Chem 47:1323–1327.

  40. 40.

    Kiruthika SE, Perumal PT (2014) One-pot four-component approach for the construction of dihydropyridines and dihydropyridinones using amines and activated alkynes. RSC Adv 4:3758–3767.

  41. 41.

    Hasaninejad A, Mandegani F (2013) An efficient synthesis of novel spiro[benzo[c]pyrano[3,2-a]phenazines] via domino multi-component reactions using l-proline as a bifunctional organocatalyst. Tetrahedron Lett 54:2791–2794.

  42. 42.

    Chd Hurd, Bauer L (1953) Poly-2-amino-4-pentenoic acid and polytryptophan. J Org Chem 18:1440–1448.

  43. 43.

    Mitsui Y, Tsuboi M, Iitaka Y (1969) The crystal structure of Dl-proline hydrochloride. Acta Cryst 25:2182–2192.

  44. 44.

    Kumari S, Singh H, Khurana JM (2016) An efficient green approach for the synthesis of novel triazolyl spirocyclic oxindole derivatives via one-pot five component protocol using DBU as catalyst in PEG-400. Tetrahedron Lett 57:3081–3085. the references therein)

  45. 45.

    Duthaler RO (2003) Proline-catalyzed asymmetric α-amination of aldehydes and ketones: an astonishingly simple access to optically active α-hydrazino carbonyl compounds. Angew Chem Int Ed 42:975–978.

  46. 46.

    Yavari I, Hosseini N, Moradi L (2008) Efficient synthesis of highly functionalized thiazolidine-4-ones under solvent-Free conditions. Monatsh Chem 139:133–136.

Download references


Support of this work by the Research Council of University of Guilan is gratefully acknowledged.

Author information

Correspondence to Kurosh Rad-Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3815 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirakmahaleh, M.S., Rad-Moghadam, K., Kefayati, H. et al. Expedient synthesis of novel antibacterial hydrazono-4-thiazolidinones under catalysis of a natural-based binary ionic liquid. Mol Divers (2020) doi:10.1007/s11030-019-10028-7

Download citation


  • Thiazolidin-4-one
  • Binary ionic liquid
  • 4-Hydroxypyran-2H-one
  • 4-Hydroxychromene-2H-one
  • Homogeneous catalysis