Advertisement

Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: topomer CoMFA and HQSAR

  • Tingting Zhao
  • Zean Zhao
  • Fengting Lu
  • Shan Chang
  • Jiajie Zhang
  • Jianxin Pang
  • Yuanxin TianEmail author
Original Article
  • 38 Downloads

Abstract

hURAT1 (human urate transporter 1) is a successful target for hyperuricemia. Recently, the modification work on hURAT1 inhibitors showed that the flexible linkers would benefit biological activity. The study aimed to investigate the contribution of the linkers and give modification strategies on this kind of structures based on QSAR models (HQSAR and topomer CoMFA). The most effective HQSAR and topomer CoMFA models were generated by applying the training set containing 63 compounds, with the cross-validated q2 values of 0.869/0.818 and the non-cross-validated correlation coefficients r2 of 0.951/0.978, respectively. The Y-randomization test was applied to ensure the robustness of the models. The external predictive correlation coefficient (r pred 2 ) grounded on the external test set (21 compounds) of two models was 0.910 and 0.907, respectively. In addition, the models were validated by Golbraikh–Tropsha and Roy methods, as well as other statistical metrics. The results showed that both models were reliable. Topomer CoMFA steric/electrostatic contours and HQSAR atomic contribution maps illustrated the structural features which governed their inhibitory potency. The dependable results could provide important insights to guide the designing of more potential hURAT1 inhibitors.

Graphical abstract

Keywords

Hyperuricemia hURAT1 inhibitors HQSAR Topomer COMFA 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (No: 81773794), Natural Science Foundation of Guangdong Province (2018A0303130088) and the Foundation of science and technology of Guangdong (2014A020210013), China.

Compliance with ethical standards

Conflict of interest

The authors affirm that there are no conflicts of interest.

Supplementary material

11030_2019_9936_MOESM1_ESM.pdf (947 kb)
Supplementary material 1 (PDF 570 kb)

References

  1. 1.
    Terkeltaub R (2010) Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol 6(1):30–38.  https://doi.org/10.1038/nrrheum.2009.236 CrossRefGoogle Scholar
  2. 2.
    Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castaneda-Sanabria J, Coyfish M, Guillo S, Jansen TL, Janssens H, Liote F, Mallen C, Nuki G, Perez-Ruiz F, Pimentao J, Punzi L, Pywell T, So A, Tausche AK, Uhlig T, Zavada J, Zhang W, Tubach F, Bardin T (2017) 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 76(1):29–42.  https://doi.org/10.1136/annrheumdis-2016-209707 CrossRefGoogle Scholar
  3. 3.
    Maesaka JK, Fishbane S (1998) Regulation of renal urate excretion: a critical review. Am J Kidney Dis 32(6):917–933.  https://doi.org/10.1016/S0272-6386(98)70067-8 CrossRefGoogle Scholar
  4. 4.
    Anzai N, Jutabha P, Endou H (2010) Renal solute transporters and their relevance to serum urate disorder. Curr Hypertens Rev 6(3):148–154.  https://doi.org/10.2174/157340210791936732 CrossRefGoogle Scholar
  5. 5.
    Enomoto A, Kimura H, Chairoungdua A et al (2002) Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417(6887):447–452.  https://doi.org/10.1038/nature742 CrossRefGoogle Scholar
  6. 6.
    Vazquez-Mellado J, Jimenez-Vaca AL, Cuevas-Covarrubias S et al (2007) Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford) 46(2):215–219.  https://doi.org/10.1093/rheumatology/kel205 CrossRefGoogle Scholar
  7. 7.
    Reginato AM, Mount D, Yang I et al (2012) The genetics of hyperuricaemia and gout. Nat Rev Rheumatol 8(10):610–621.  https://doi.org/10.1038/nrrheum.2012.144 CrossRefGoogle Scholar
  8. 8.
    Cai W, Liu W, Liu C, Wang J, Zhao G (2017) A systematic review of uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia and gout and an insight into the structure-activity relationship (SAR). Chin J Struct Chem 36(6):897–910.  https://doi.org/10.14102/j.cnki.02545861.2011-1596 Google Scholar
  9. 9.
    Kong LD, Pan Y (2016) Urate transporter URAT1 inhibitors: a patent review (2012–2015). Expert Opin Ther Pat 26(10):1.  https://doi.org/10.1080/13543776.2016.1213243 Google Scholar
  10. 10.
    Wempe MF, Quade B, Jutabha P, Iwen T, Frick M, Rice PJ, Wakui S, Endou H (2011) Human uric acid transporter 1 (hURAT1): an inhibitor structure-activity relationship (SAR) study. Nucleosides, Nucleotides Nucleic Acids 30(12):1312–1323.  https://doi.org/10.1080/15257770.2011.594031 CrossRefGoogle Scholar
  11. 11.
    Wempe MF, Lightner JW, Miller B, Iwen TJ, Rice PJ, Wakui S, Anzai N, Jutabha P, Endou H (2012) Potent human uric acid transporter 1 inhibitors: in vitro and in vivo metabolism and pharmacokinetic studies. Drug Des Dev Ther 6:323–339.  https://doi.org/10.2147/DDDT.S35805 CrossRefGoogle Scholar
  12. 12.
    Peng J, Hu Q, Gu C, Liu B, Jin F, Yuan J, Feng J, Zhang L, Lan J, Dong Q (2016) Discovery of potent and orally bioavailable inhibitors of Human Uric Acid Transporter 1 (hURAT1) and binding mode prediction using homology model. Bioorg Med Chem Lett 26(2):277–282CrossRefGoogle Scholar
  13. 13.
    Yong T, Xie Y, Chen S, Chen D, Su J, Jiao C, Hu H, Xiao C (2018) Hypouricemic effect of Grifola frondosa on hyperuricemic mice and virtual screening of bioactives by 3D QSAR pharmacophore modeling. J Funct Foods 40:582–588.  https://doi.org/10.1016/j.jff.2017.11.049 CrossRefGoogle Scholar
  14. 14.
    Cai W, Wu J, Liu W, Xie Y, Liu Y, Zhang S, Xu W, Tang L, Wang J, Zhao G (2018) Systematic structure-activity relationship (SAR) exploration of diarylmethane backbone and discovery of a highly potent novel uric acid transporter 1 (URAT1) inhibitor. Molecules 23(2):252.  https://doi.org/10.3390/molecules23020252 CrossRefGoogle Scholar
  15. 15.
    Zhang X, Wu J, Liu W, Liu Y, Xie Y, Shang Q, Zhou Z, Xu W, Tang L, Wang J, Zhao G (2017) Discovery of flexible naphthyltriazolylmethane-based thioacetic acids as highly active uric acid transporter 1 (URAT1) inhibitors for the treatment of hyperuricemia of gout. Med Chem 13(3):260–281.  https://doi.org/10.2174/1573406412666160915163002 CrossRefGoogle Scholar
  16. 16.
    Tian H, Liu W, Zhou Z, Shang Q, Liu Y, Xie Y, Liu C, Xu W, Tang L, Wang J, Zhao G (2016) Discovery of a flexible triazolylbutanoic acid as a highly potent uric acid transporter 1 (URAT1) inhibitor. Molecules 21(11):1543.  https://doi.org/10.3390/molecules21111543 CrossRefGoogle Scholar
  17. 17.
    Ahn SO, Ohtomo S, Kiyokawa J, Nakagawa T, Yamane M, Lee KJ, Kim KH, Kim BH, Tanaka J, Kawabe Y, Horiba N (2016) Stronger uricosuric effects of the novel selective URAT1 inhibitor UR-1102 lowered plasma urate in tufted capuchin monkeys to a greater extent than benzbromarone. J Pharmacol Exp Ther 357(1):157–166.  https://doi.org/10.1124/jpet.115.231647 CrossRefGoogle Scholar
  18. 18.
    Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). Int J Quant Struct-Prop Relationsh 1:1–44CrossRefGoogle Scholar
  19. 19.
    Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, London.  https://doi.org/10.1016/B978-0-12-801505-6.00016-8 Google Scholar
  20. 20.
    Yang X-L, Zhou Y, Liu X-L (2013) Hologram quantitative structure–activity relationship studies on 1-(5-carboxyindol-1-yl) propan-2-one inhibitors of human cytosolic phospholipase A2α. Med Chem Res 23(3):1512–1518.  https://doi.org/10.1007/s00044-013-0763-5 CrossRefGoogle Scholar
  21. 21.
    Maltarollo VG, Honorio K, Emery FS, Ganesan A, Trossini GH (2015) Hologram quantitative structure-activity relationship and comparative molecular interaction field analysis of aminothiazole and thiazolesulfonamide as reversible LSD-1 inhibitors. Future Med Chem 7(11):1381–1394.  https://doi.org/10.4155/fmc.15.68 CrossRefGoogle Scholar
  22. 22.
    Salum LB, Andricopulo AD (2009) Fragment-based QSAR: perspectives in drug design. Mol Divers 13(3):277–285.  https://doi.org/10.1007/s11030-009-9112-5 CrossRefGoogle Scholar
  23. 23.
    Babu S, Rupa M, Nagarajan SK, Sohn H, Madhavan T (2016) Molecular modeling study on diazine indole acetic acid derivatives for CRTH2 inhibitory activity. Comb Chem High Throughput Screen 19(6):444–460.  https://doi.org/10.2174/1386207319666160502123759 CrossRefGoogle Scholar
  24. 24.
    Cramer R, Patterson D, Bunce J (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967.  https://doi.org/10.1002/chin.198851058 CrossRefGoogle Scholar
  25. 25.
    Cramer RD (2012) R-group template CoMFA combines benefits of “ad hoc” and topomer alignments using 3D-QSAR for lead optimization. J Comput Aided Mol Des 26(7):805–819.  https://doi.org/10.1007/s10822-012-9583-9 CrossRefGoogle Scholar
  26. 26.
    Liang T, Yan C, Yang L, Hu M, Ban S, Li Q (2014) 3D-QSAR studies of 8-substituted chromen-4-one-2-carboxylic acid derivatives as potent agonists for the orphan G protein-coupled receptor 35. Med Chem Res 24(5):2183–2194.  https://doi.org/10.1007/s00044-014-1287-3 CrossRefGoogle Scholar
  27. 27.
    Araujo SC, Maltarollo VG, Honorio KM (2013) Computational studies of TGF-betaRI (ALK-5) inhibitors: analysis of the binding interactions between ligand-receptor using 2D and 3D techniques. Eur J Pharm Sci 49(4):542–549.  https://doi.org/10.1016/j.ejps.2013.05.015 CrossRefGoogle Scholar
  28. 28.
    Wempe MF, Jutabha P, Quade B, Iwen TJ, Frick MM, Ross IR, Rice PJ, Anzai N, Endou H (2011) Developing potent human uric acid transporter 1 (hURAT1) inhibitors. J Med Chem 54(8):2701–2713.  https://doi.org/10.1021/jm1015022 CrossRefGoogle Scholar
  29. 29.
    Sato Pharmaceutical Co, Ltd. US8987473 (2015)Google Scholar
  30. 30.
    Clark M, Cramer RD, Opdenbosch NV (1989) Validation of the general purpose tripos 5.2 force field. Comput Chem 10(8):982–1012.  https://doi.org/10.1002/jcc.540100804 CrossRefGoogle Scholar
  31. 31.
    William P-P, Judith AS (1967) A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J Chem Eng 12:235–246.  https://doi.org/10.1021/je60033a020 Google Scholar
  32. 32.
    Zaheer UH, Sajda A, Abdullah AM et al (2016) 3D-QSAR studies on barbituric acid derivatives as urease inhibitors and the effect of charges on the quality of a model. Int J Mol Sci 17(5):657.  https://doi.org/10.3390/ijms17050657 CrossRefGoogle Scholar
  33. 33.
    Huang D, Liu Y, Shi B, Li Y, Wang G, Liang G (2013) Comprehensive 3D-QSAR and binding mode of BACE-1 inhibitors using R-group search and molecular docking. J Mol Graph Model 45(18):65–83.  https://doi.org/10.1016/j.jmgm.2013.08.003 CrossRefGoogle Scholar
  34. 34.
    Flower DR (1998) On the properties of bit string-based measures of chemical similarity. J Chem Inf Comput Sci 38(3):379–386.  https://doi.org/10.1021/ci970437z CrossRefGoogle Scholar
  35. 35.
    Ferreira LG, Andricopulo AD (2013) Inhibitors of Trypanosoma brucei trypanothione reductase: comparative molecular field analysis modeling and structural basis for selective inhibition. Future Med Chem 5(15):1753–1762.  https://doi.org/10.4155/fmc.13.140 CrossRefGoogle Scholar
  36. 36.
    Cramer RD, Cruz P, Stahl G et al (2009) Virtual screening for R-groups, including predicted pIC50 contributions, within large structural databases, using topomer CoMFA. J Chem Inf Model 40(15):2180–2195.  https://doi.org/10.1021/ci8001556 Google Scholar
  37. 37.
    Laskowski RA, MacArthur MW, Moss DS, Thorton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291.  https://doi.org/10.1107/S0021889892009944 CrossRefGoogle Scholar
  38. 38.
    Wiederstein M, Sippl M (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:407–410.  https://doi.org/10.1093/nar/gkm290 CrossRefGoogle Scholar
  39. 39.
    Wold S, Sjöström M, Eriksson L (2002) Partial least squares projections to latent structures (PLS) in chemistry. Wiley, London.  https://doi.org/10.1002/0470845015.cpa012 CrossRefGoogle Scholar
  40. 40.
    Mitra I, Saha A, Roy K (2010) Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36(13):1067–1079.  https://doi.org/10.1080/08927022.2010.503326 CrossRefGoogle Scholar
  41. 41.
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276.  https://doi.org/10.1016/S1093-3263(01)00123-1 CrossRefGoogle Scholar
  42. 42.
    Ojha PK, Mitra I, Das RN, Roy K (2011) Further exploring rm2 metrics for validation of QSPR models. Chemometr Intell Lab Syst 107(1):194–205.  https://doi.org/10.1016/j.chemolab.2011.03.011 CrossRefGoogle Scholar
  43. 43.
    Roy K, Kar S (2014) The rm2 metrics and regression through origin approach: reliable and useful validation tools for predictive QSAR models (Commentary on ‘Is regression through origin useful in external validation of QSAR models?’). Eur J Pharm Sci 62:111–114.  https://doi.org/10.1016/j.ejps.2014.05.019 CrossRefGoogle Scholar
  44. 44.
    SchC Ebert RU, Chen J, Wang B (2008) External validation and prediction employing the predictive squared correlation coefficient test set activity mean versus training set activity mean. J Chem Inf Model 48(11):2140–2145.  https://doi.org/10.1021/ci800253u CrossRefGoogle Scholar
  45. 45.
    Chirico N, Gramatica P (2011) Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. J Chem Inf Model 51(9):2320–2335.  https://doi.org/10.1021/ci200211n CrossRefGoogle Scholar
  46. 46.
    Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152:18–33.  https://doi.org/10.1016/j.chemolab.2016.01.008 CrossRefGoogle Scholar
  47. 47.
    Wu T, Chen J, Dong S, Li H, Cao Y, Tian Y, Fu W, Zhou P, Xi B, Pang J (2017) Identification and characterization of a potent and selective inhibitor of human urate transporter 1. Pharmacol Rep 69(5):1103–1112.  https://doi.org/10.1016/j.pharep.2017.04.022 CrossRefGoogle Scholar
  48. 48.
    Wang H, Feng Y, Wang Q (2016) Cysteine-based protein adduction by epoxide-derived metabolite(s) of benzbromarone. Chem Res Toxicol 29(12):2145–2152.  https://doi.org/10.1021/acs.chemrestox.6b00275 CrossRefGoogle Scholar
  49. 49.
    Jiangsu Atom Bioscience and Pharmaceutical Co., Ltd. W0 2017/041732 A1Google Scholar
  50. 50.
    Fan C, Chen H, Li C (2017) Synthesis of naphthyl triazole carboxylic acid compounds and their inhibitory activities against URAT1. Drugs Clinic 32:1165–1170.  https://doi.org/10.7501/j.issn.1674-5515.2017.07.001 Google Scholar
  51. 51.
    Xia C, Wei S, Li S, Wang S (2015) Design, synthesis and biological activity of a novel uric acid transporter 1(URAT1)inhibitor. Chem Reag 37(11):969–975.  https://doi.org/10.13822/j.cnki.hxsj.2015.11.003 Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
  2. 2.Institutes of Bioinformatics and Medical Engineering, School of Electrical and Information EngineeringJiangsu University of TechnologyChangzhouChina

Personalised recommendations