Advertisement

Iodine/potassium iodide catalyst for the synthesis of trifluoromethylated quinazolines via intramolecular cyclization of 2,2,2-trifluoro-N-benzyl-N′-arylacetimidamides

  • Ali DarehkordiEmail author
  • Elham Kazemi
Original Article
  • 9 Downloads

Abstract

An efficient and simple protocol for the synthesis of trifluoromethylated quinazolines has been described by I2-/KI-promoted oxidative C(sp3)–C(sp2) bond under the optimal oxidative cyclization reaction conditions. The required 2,2,2-trifluoro-N-benzyl-N′-arylacetimidamides are readily prepared from the corresponding acetimidoyl chlorides and benzylamines under a nucleophilic substitution reaction in the form of in situ. The merits of this protocol are the use of inexpensive molecular iodine, metal-free oxidative coupling and good to excellent yields.

Keywords

Trifluoromethylated quinazoline 2,2,2-Trifluoro-N-arylacetimidoyl chloride C(sp3)–C(sp2) bond oxidative Intramolecular cyclization 

Notes

Acknowledgements

We gratefully acknowledge the Vail-e-Asr University of Rafsanjan Faculty Research Grant for financial support.

Supplementary material

11030_2019_9933_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1516 kb)

References

  1. 1.
    Ugale VG, Bari SB (2014) Quinazolines: new horizons in anticonvulsant therapy. Eur J Med Chem 80:447–501.  https://doi.org/10.1016/j.ejmech.2014.04.072 CrossRefGoogle Scholar
  2. 2.
    Alafeefy AM, Kadi AA, Al-Deeb OA, El-Tahir KE, Aljaber NA (2010) Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur J Med Chem 45:4947–4952.  https://doi.org/10.1016/j.ejmech.2010.07.067 CrossRefGoogle Scholar
  3. 3.
    Marzaro G, Guiotto A, Chilin A (2012) Quinazoline derivatives as potential anticancer agents: a patent review (2007–2010). Expert Opin Ther Pat 22:223–252.  https://doi.org/10.1517/13543776.2012.665876 CrossRefGoogle Scholar
  4. 4.
    Mahdavi M, Lotfi V, Saeedi M, Kianmehr E, Shafiee A (2016) Synthesis of novel fused quinazolinone derivatives. Mol Divers 20:677–685.  https://doi.org/10.1007/s11030-016-9675-x CrossRefGoogle Scholar
  5. 5.
    Khan I, Ibrar A, Abbas N, Saeed A (2014) Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications. Eur J Med Chem 76:193–244.  https://doi.org/10.1016/j.ejmech.2014.02.005 CrossRefGoogle Scholar
  6. 6.
    Ge WL, Zhu X, Wei YY (2013) Iodine-catalyzed oxidative system for cyclization of primary alcohols with o-aminobenzamides to quinazolinones using DMSO as the oxidant in dimethyl carbonate. RSC Adv 3:10817–10822.  https://doi.org/10.1039/C3RA40872H CrossRefGoogle Scholar
  7. 7.
    Machara A, Lux V, Kozisek M, Grantz-Saskova K, Stepanek O, Kotora M, Parkan K, Pavova M, Glass B, Sehr PJ (2016) Specific inhibitors of HIV capsid assembly binding to the c-terminal domain of the capsid protein: evaluation of 2-arylquinazolines as potential antiviral compounds. Med Chem 59:545–558.  https://doi.org/10.1021/acs.jmedchem.5b01089 CrossRefGoogle Scholar
  8. 8.
    Liu LT, Yuan TT, Liu HH (2007) Synthesis and biological evaluation of substituted 6-alkynyl-4-anilinoquinazoline derivatives as potent EGFR inhibitors. Bioorg Med Chem Lett 17:6373.  https://doi.org/10.1016/j.bmcl.2007.08.061 CrossRefGoogle Scholar
  9. 9.
    Michael JP (2008) Quinoline, quinazoline and acridone alkaloids Nat. Prod Rep 25:166.  https://doi.org/10.1039/B612168N CrossRefGoogle Scholar
  10. 10.
    Luth A, Lowe W (2008) Syntheses of 4-(indole-3-yl)quinazolines-A new class of epidermal growth factor receptor tyrosine kinase inhibitors. Eur J Med Chem 43:1478.  https://doi.org/10.1016/j.ejmech.2007.09.018 CrossRefGoogle Scholar
  11. 11.
    Fang J, Zhou JG, Fang ZJ (2013) Synthesis of 2-substituted quinazolines via iridium catalysis. RSC Adv 3:334.  https://doi.org/10.1039/C2RA22278G CrossRefGoogle Scholar
  12. 12.
    Zhang J, Yu C, Wang S, Wan C, Wang Z (2010) A novel and efficient methodology for the construction of quinazolines based on supported copper oxide nanoparticles. Chem Commun 46:5244–5246.  https://doi.org/10.1039/C002454F CrossRefGoogle Scholar
  13. 13.
    Panja SK, Saha S (2013) Recyclable, magnetic ionic liquid bmim[FeCl4]-catalyzed, multicomponent, solvent-free, green synthesis of quinazolines. RSC Adv 3:14495.  https://doi.org/10.1039/C3RA42039F CrossRefGoogle Scholar
  14. 14.
    Portela-Cubillo F, Scott JS, Walton JC (2009) Microwave-promoted syntheses of quinazolines and dihydroquinazolines from 2-aminoarylalkanone O-phenyl oximes. J Org Chem 74:4934–4942.  https://doi.org/10.1021/jo900629g CrossRefGoogle Scholar
  15. 15.
    Ju J, Hua R, Su J (2012) Copper-catalyzed three-component one-pot synthesis of quinazolines. Tetrahedron 68:9364–9370.  https://doi.org/10.1016/j.tet.2012.09.035 CrossRefGoogle Scholar
  16. 16.
    Truong VL, Morrow M (2010) Mild and efficient ligand-free copper-catalyzed condensation for the synthesis of quinazolines. Tetrahedron Lett 51:758–760.  https://doi.org/10.1016/j.tetlet.2009.11.133 CrossRefGoogle Scholar
  17. 17.
    Malakar CC, Baskakova A, Conrad J, Beifuss U (2012) Copper-catalyzed synthesis of quinazolines in water starting from o-Bromobenzylbromides and Benzamidines. Chem Eur J 18:8882–8885.  https://doi.org/10.1002/chem.201200583 CrossRefGoogle Scholar
  18. 18.
    Omar MA, Conrad J, Beifuss U (2014) Assembly of 4H-chromenes, imidazobenzothiazines and quinazolines via copper-catalyzed domino reactions using 2-halobenzyl tosylates as substrates. Tetrahedron 70:5682–5695.  https://doi.org/10.1016/j.tet.2014.06.071 CrossRefGoogle Scholar
  19. 19.
    Omar MA, Conrad J, Beifuss U (2014) Copper-catalyzed domino reaction between 1-(2-halophenyl) methanamines and amidines or imidates for the synthesis of 2-substituted quinazolines. Tetrahedron 70:3061–3072.  https://doi.org/10.1016/j.tet.2014.02.066 CrossRefGoogle Scholar
  20. 20.
    Lin JP, Zhang FH, Long YQ (2014) Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines. Org Lett 16:2822.  https://doi.org/10.1021/ol500864r CrossRefGoogle Scholar
  21. 21.
    Wang CS, Li F, Liu HX, Jiang YY, Fu H (2010) Copper-catalyzed synthesis of quinazoline derivatives via Ullmann-type coupling and aerobic oxidation. J Org Chem 75:7936.  https://doi.org/10.1021/jo101685d CrossRefGoogle Scholar
  22. 22.
    Zhang W, Guo F, Wang F, Zhao N, Liu L, Li J, Wang ZH (2014) Synthesis of quinazolines via CuO nanoparticles catalyzed aerobic oxidative coupling of aromatic alcohols and amidines. Org Biomol Chem 12:5752.  https://doi.org/10.1039/C4OB00569D CrossRefGoogle Scholar
  23. 23.
    Zhao D, Shen Q, Li JX (2015) Potassium iodide-catalyzed three-component synthesis of 2-arylquinazolines via amination of benzylic C–H bonds of methylarenes. Adv Synth Catal 357:339.  https://doi.org/10.1002/adsc.201400827 CrossRefGoogle Scholar
  24. 24.
    Lv Z, Wang B, Hu Z, Zhou Y, Yu W, Chang J (2016) Synthesis of quinazolines from N,N′-disubstituted amidines via I2/KI-mediated oxidative C–C bond formation. J Org Chem 81:9924–9930.  https://doi.org/10.1021/acs.joc.6b02100 CrossRefGoogle Scholar
  25. 25.
    Rahmani F, Darehkordi A (2017) Synthesis of trifluoromethylated pyrroles via a one-pot three-component reaction. Synlett 28:1224–1226.  https://doi.org/10.1055/s-0036-1588732 CrossRefGoogle Scholar
  26. 26.
    Darehkordi A, Rahmani F, Hashemi V (2013) Synthesis of new trifluoromethylated indole derivatives. Tetrahedron Lett 54:4689–4692.  https://doi.org/10.1016/j.tetlet.2013.06.093 CrossRefGoogle Scholar
  27. 27.
    Darehkordi A, Rahmani F (2016) Synthesis of new α-trifluoromethyl substituted formamidines framework by using N-nucleophiles and N, S bidentate nucleophiles. J Fluorine Chem 190:41–47.  https://doi.org/10.1016/j.jfluchem.2016.08.010 CrossRefGoogle Scholar
  28. 28.
    Pang X, Chen C, Su X, Li M, Wen L (2014) Diverse tandem cyclization reactions of o-cyanoanilines and diaryliodonium salts with copper catalyst for the construction of quinazolinimine and acridine scaffolds. Org Lett 16:6228.  https://doi.org/10.1021/ol503156g CrossRefGoogle Scholar
  29. 29.
    Liu Q, Zhao YF, Fu H, Cheng CM (2013) Copper-catalyzed sequential n-arylation and aerobic oxidation: synthesis of quinazoline derivatives. Synlett 24:2089.  https://doi.org/10.1055/s-0033-1339800 CrossRefGoogle Scholar
  30. 30.
    Liu Q, Zhang Q (2013) Copper-catalyzed annulation of amidines for quinazoline synthesis. Chem Commun 49:6439.  https://doi.org/10.1039/C3CC43129K CrossRefGoogle Scholar
  31. 31.
    Finkbeiner P, Nachtsheim B (2013) Iodine in modern oxidation catalysis. J. Synth 45:979.  https://doi.org/10.1055/s-0032-1318330 CrossRefGoogle Scholar
  32. 32.
    Guo X, Pan S, Liu J, Li ZJ (2009) One-pot synthesis of symmetric and unsymmetric 1,1-bis-indolylmethanes via tandem iron-catalyzed C–H bond oxidation and C–O bond cleavage. Org Chem 74:8848.  https://doi.org/10.1021/jo902093p CrossRefGoogle Scholar
  33. 33.
    Li H, He Z, Guo X, Li W, Zhao X, Li Z (2009) Iron-catalyzed selective oxidation of n-methyl amines: highly efficient synthesis of methylene-bridged bis-1,3-dicarbonyl compounds. Org Lett 11:4176.  https://doi.org/10.1021/ol901751c CrossRefGoogle Scholar
  34. 34.
    Li Z, Cao L, Li C (2007) FeCl2-catalyzed selective C–C bond formation by oxidative activation of a benzylic C–H bond. J Angew Chem Int Ed 46:6505CrossRefGoogle Scholar
  35. 35.
    Parvatkar PT, Parameswaran PS, Tilve SG (2012) FeCL2-catalyzed selective C-C bond formation by oxidative activation of a benzylic C–H bond. Chem Eur J 18:5460–5489.  https://doi.org/10.1002/anie.200701782 CrossRefGoogle Scholar
  36. 36.
    Cheng X, Wang H, Xiao F, Deng GJ (2016) Lewis acid-catalyzed 2-arylquinazoline formation from N′-arylbenzimidamides and paraformaldehyde. Green Chem 18:5773–5776.  https://doi.org/10.1039/C6GC02319C CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryVali-e-Asr UniversityRafsanjanIran

Personalised recommendations