Advertisement

Design, synthesis and antifungal activities of novel pyrrole- and pyrazole-substituted coumarin derivatives

  • Shu-Guang Zhang
  • Chao-Gen Liang
  • Yue-Qing Sun
  • Peng Teng
  • Jia-Qun Wang
  • Wei-Hua ZhangEmail author
Original Article
  • 25 Downloads

Abstract

We synthesized a series of novel pyrrole- and pyrazole-substituted coumarin derivatives and evaluated their antifungal activity against six phytopathogenic fungi in vitro. The primary assay results demonstrated that some designed compounds displayed potent activities. Among them, compounds 5g, 6a, 6b, 6c, 6d and 6h exhibited more effective control than Osthole against Cucumber anthrax and Alternaria leaf spot. Furthermore, compound 5g displayed stronger antifungal activity against Rhizoctorzia solani (EC50 = 15.4 µg/mL) than positive control Osthole (EC50 = 67.2 µg/mL).

Graphical abstract

Keywords

Aminocoumarin derivatives Nitrogen-containing Synthesis Antifungal activity 

Notes

Acknowledgements

The authors are grateful to the Program of National Key R&D Program of China (2018YFD0200103) and the Fundamental Research Funds for the Central Universities (KYTZ 201604) for partially funding this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11030_2019_9920_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3444 kb)

References

  1. 1.
    Hu YQ, Xu Z, Zhang S, Wu X, Ding JW, Lv ZS, Feng LS (2017) Recent development of coumarin-containing derivatives and their anti-tubercular activity. Eur J Med Chem 136:122–130.  https://doi.org/10.1016/j.ejmech.2017.05.004 CrossRefGoogle Scholar
  2. 2.
    Emami S, Dadashpour S (2015) Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur J Med Chem 102:611–630.  https://doi.org/10.1016/j.ejmech.2015.08.033 CrossRefGoogle Scholar
  3. 3.
    Vogl S, Zehl M, Picker P, Urban E, Wawrosch C, Reznicek G, Saukel J, Kopp B (2011) Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC-DAD and HPLC-DAD-MS. J Agric Food Chem 59:4371–4377.  https://doi.org/10.1021/jf104772x CrossRefGoogle Scholar
  4. 4.
    lyer D, Patil UK (2014) Evaluation of antihyperlipidemic and antitumor activities of isolated coumarins from Salvadora indica. Pharm Biol 52:78–85.  https://doi.org/10.3109/13880209.2013.815633 CrossRefGoogle Scholar
  5. 5.
    Shah MR, Shamim A, White LS, Bertino MF, Mesaik MA, Soomro S (2014) The anti-inflammatory properties of Au-scopoletin nanoconjugates. New J Chem 38:5566–5572.  https://doi.org/10.1039/C4NJ00792A CrossRefGoogle Scholar
  6. 6.
    Liu W, Wu J, Wang SJ, Kong WS, Qin YH, Yang GY, Chen YK (2014) A new coumarin from roots and stems of flue-cured tobacco and its anti-tobacco mosaic virus activity. Asian J Chem 26:2820–2822.  https://doi.org/10.14233/ajchem.2014.15807 CrossRefGoogle Scholar
  7. 7.
    Domagala A, Jarosz T, Lapkowski M (2015) Living on pyrrolic foundations-Advances in natural and artificial bioactive pyrrole derivatives. Eur J Med Chem 100:176–187.  https://doi.org/10.1016/j.ejmech.2015.06.009 CrossRefGoogle Scholar
  8. 8.
    Gholap SS (2016) Pyrrole: an emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 110:13–31.  https://doi.org/10.1016/j.ejmech.2015.12.017 CrossRefGoogle Scholar
  9. 9.
    Ahmad S, Alam O, Javed Naim M, Shaquiquzzaman M, Mumtaz Alam M, Iqbal M (2018) Pyrrole: an insight into recent pharmacological advances with structure activity relationship. Eur J Med Chem 157:527–561.  https://doi.org/10.1016/j.ejmech.2018.08.002 CrossRefGoogle Scholar
  10. 10.
    Küçükgüzel ŞG, Şenkardeş S (2015) Recent advances in bioactive pyrazoles. Eur J Med Chem 97:786–815.  https://doi.org/10.1016/j.ejmech.2014.11.059 CrossRefGoogle Scholar
  11. 11.
    Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M (2016) The therapeutic voyage of pyrazole and its analogs: a review. Eur J Med Chem 120:170–201.  https://doi.org/10.1016/j.ejmech.2016.04.077 CrossRefGoogle Scholar
  12. 12.
    Zhu XF, van Pée KH, Naismith JH (2010) The ternary complex of PrnB (the second enzyme in the pyrrolnitrin biosynthesis pathway), tryptophan, and cyanide yields new mechanistic insights into the indolamine dioxygenase superfamily. J Biol Chem 285:21126–21133.  https://doi.org/10.1074/jbc.M110.120485 CrossRefGoogle Scholar
  13. 13.
    Santos AFLOM, Ribeiro da Silva MAV (2010) Experimental and computational thermochemistry of 1-phenylpyrrole and 1-(4-methylphenyl)pyrrole. J Chem Thermodynamics 42:734–741.  https://doi.org/10.1016/j.jct.2010.01.009 CrossRefGoogle Scholar
  14. 14.
    Bennett JW, Bentley R (2000) Seeing red: the story of prodigiosin. Adv Appl Microbiol 47:1–32.  https://doi.org/10.1016/S0065-2164(00)47000-0 CrossRefGoogle Scholar
  15. 15.
    Williamson NR, Flineran PC, Leeper FJ, Salmond GPC (2006) The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887–899.  https://doi.org/10.1038/nrmicro1531 CrossRefGoogle Scholar
  16. 16.
    Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GPC (2007) Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol 2:605–618.  https://doi.org/10.2217/17460913.2.6.605 CrossRefGoogle Scholar
  17. 17.
    Hassan GS, Abou-Seri SM, Kamel G, Ali MM (2014) Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: design, synthesis and evaluation as potential anti-inflammatory agents. Eur J Med Chem 76:482–493.  https://doi.org/10.1016/j.ejmech.2014.02.033 CrossRefGoogle Scholar
  18. 18.
    Sun HY, Ji FQ (2012) A molecular dynamics investigation on crizotinib resistance mechanism of C1156Y mutation in ALK. Biochem Biophys Res Comm 423:319–324.  https://doi.org/10.1016/j.bbrc.2012.05.120 CrossRefGoogle Scholar
  19. 19.
    Brune K (1997) The early history of non-opioid analgesics. Acute Pain 1:33–40.  https://doi.org/10.1016/S1366-0071(97)80033-2 CrossRefGoogle Scholar
  20. 20.
    Zhang MZ, Zhang RR, Yin WZ, Yu X, Zhang YL, Liu P, Gu YC, Zhang WH (2016) Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e] [1, 3]oxazine derivatives. Mol Divers 20:611–618.  https://doi.org/10.1007/s11030-016-9662-2 CrossRefGoogle Scholar
  21. 21.
    Zhang RR, Liu J, Zhang Y, Hou MQ, Zhang MZ, Zhou F, Zhang WH (2016) Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: pyrano[3,2-c]chromene-2,5-diones. Eur J Med Chem 116:76–83.  https://doi.org/10.1016/j.ejmech.2016.03.069 CrossRefGoogle Scholar
  22. 22.
    Zhang MZ, Zhang RR, Wang JQ, Yu X, Zhang YL, Wang QQ, Zhang WH (2016) Microwave-assisted synthesis and antifungal activity of novel fused Osthole derivatives. Eur J Med Chem 124:10–16.  https://doi.org/10.1016/j.ejmech.2016.08.012 CrossRefGoogle Scholar
  23. 23.
    Zhang MZ, Zhang Y, Wang JQ, Zhang WH (2016) Design, synthesis and antifungal activity of coumarin ring-opening derivatives. Molecules 21:1387.  https://doi.org/10.3390/molecules21101387 CrossRefGoogle Scholar
  24. 24.
    Yu X, Wen Y, Liang CG, Liu J, Ding YB, Zhang WH (2017) Design, synthesis and antifungal activity of psoralen derivatives. Molecules 22:1672.  https://doi.org/10.3390/molecules22101672 CrossRefGoogle Scholar
  25. 25.
    Yu X, Teng P, Zhang YL, Xu ZJ, Zhang MZ, Zhang WH (2018) Design, synthesis and antifungal activity evaluation of coumarin-3-carboxamide derivatives. Fitoterapia 127:387–395.  https://doi.org/10.1016/j.fitote.2018.03.013 CrossRefGoogle Scholar
  26. 26.
    Huang M, Xie SS, Jiang N, Lan JS, Kong LY, Wang XB (2015) Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg Med Chem Lett 25:508–513.  https://doi.org/10.1016/j.bmcl.2014.12.034 CrossRefGoogle Scholar
  27. 27.
    Kathuria A, Priya N, Chand K, Singh P, Gupta A, Jalal S, Gupta S, Raj HG, Sharma SK (2012) Substrate specificity of acetoxy derivatives of coumarins and quinolones towards calreticulin mediated transacetylation: investigations on antiplatelet function. Bioorg Med Chem 20:1624–1638.  https://doi.org/10.1016/j.bmc.2011.11.016 CrossRefGoogle Scholar
  28. 28.
    Liu YF, Chen ZY, Ng TB, Zhang J, Zhou MG, Song FP, Lu F, Liu YZ (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28:553–559.  https://doi.org/10.1016/j.peptides.2006.10.009 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shu-Guang Zhang
    • 1
  • Chao-Gen Liang
    • 1
  • Yue-Qing Sun
    • 1
  • Peng Teng
    • 1
  • Jia-Qun Wang
    • 1
  • Wei-Hua Zhang
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of Pesticide, College of SciencesNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations