Advertisement

Synthesis, spectral characterization, docking studies and biological activity of urea, thiourea, sulfonamide and carbamate derivatives of imatinib intermediate

  • Mandala Chandrasekhar
  • Gandavaram Syam Prasad
  • Chintha Venkataramaiah
  • Chamarthi Naga RajuEmail author
  • Kalluru Seshaiah
  • Wudayagiri Rajendra
Original Article
  • 47 Downloads

Abstract

A series of new urea/thiourea derivatives 3a–j were synthesized by simple addition reaction of functionalized phenyl isocyanates/isothiocyanates 2a–j with N-(5-amino-2-methylphenyl)-4-(3-pyridyl)-2-pyrimidinamine (imatinib intermediate) (1) in the presence of 1,4-dimethyl piperazine (DMPZ) as a base, and another series of new sulfonamide/carbamate derivatives 5a–k were synthesized by reacting 1 with various substituted aromatic sulfonyl chlorides 4a–f and aromatic/aliphatic chloroformates 4g–k in the presence of DMPZ as a base. The title compounds 3a–j and 5a–k were characterized by IR, 1H, 13C NMR and mass spectral data. Antimicrobial, antioxidant and in silico molecular docking studies were made against aromatase.

Graphical abstract

Keywords

Antibacterial activity Antifungal activity Antioxidant activity Carbamate derivatives Molecular docking Sulfonamide derivatives Thiourea derivatives Urea derivatives 

Notes

Acknowledgements

The authors are grateful to the department of Chemistry and Zoology, Sri Venkateswara University, for providing necessary lab facility to carry out this research work.

Compliance with ethical standards

Conflict of interest

All the authors declared that there is no conflict of interest in this work.

Supplementary material

11030_2018_9906_MOESM1_ESM.doc (3.1 mb)
Supplementary material 1 (DOC 3140 kb)

References

  1. 1.
    Yuvaraj D, Shruti B, Dipak PA (2015) A facile approach to the synthesis of structurally diverse 6,8a-dihydropyrido[2,3-d]pyrimidine derivatives via a three-component domino reaction. Org Biomol Chem 13:9181–9185.  https://doi.org/10.1039/C5OB01484K CrossRefGoogle Scholar
  2. 2.
    Sharma V, Chitranshi N, Agarwal AK (2014) Quantum chemical characterization of hydrogen bonding sites in three 4-(4-halo-phenyl)-6-(furan-2-yl) pyrimidin-2-amine derivatives. Int J Med Chem.  https://doi.org/10.4236/cc.2017.53008 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    El-Deeb IM, Ryu JC, Lee SH (2008) Synthesis of new n-arylpyrimidin-2-amine derivatives using a palladium catalyst. Molecules 13:818–830.  https://doi.org/10.3390/molecules13040818 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Amala K, Bhujanga Rao KA, Pulla Reddy M, Sreenivas R, Venugopala KG, Pramod Kumar D (2012) A facile total synthesis for large-scale production of imatinib base. Org Process Res Dev 16:1794–1804.  https://doi.org/10.1021/op300212u CrossRefGoogle Scholar
  5. 5.
    Fournier J, Bruneau C, Dixneuf PH, Lecolier S (1991) Ruthenium-catalyzed synthesis of symmetrical N, N’-dialkylureas directly from carbon dioxide and amines. J Org Chem 56:4456–4458.  https://doi.org/10.1021/jo00014a024 CrossRefGoogle Scholar
  6. 6.
    Venkata Ramana K, Rasheed S, Madhava G, Adam S, Naga Raju C (2014) Synthesis and biological evaluation of novel urea and thiourea derivatives of valacyclovir. J Serb Chem Soc 79:283–289.  https://doi.org/10.2298/JSC120716095K CrossRefGoogle Scholar
  7. 7.
    Bloom JD, Dushin RG, Curran KJ, Donahue F, Norton EB, Terefenko E, Jonas TR, Ross AA, Feld B, Lang SA, DiGrandi MJ (2004) Thiourea inhibitors of herpes viruses. Part 2: N-Benzyl-N′-arylthiourea inhibitors of CMV. Bioorg Med Chem 14:3401–3406.  https://doi.org/10.1016/j.bmcl.2004.04.093 CrossRefGoogle Scholar
  8. 8.
    Audia JE, Evrard DA, Murdoch GR, Droste JJ, Nissen JS, Schenck KW, Fludzinski P, Lucaites VL, Nelson DL, Cohen ML (1996) Potent, selective tetrahydro-β-carboline antagonists of the serotonin 2B (5HT2B) contractile receptor in the rat stomach fundus. J Med Chem 39:2773–2780.  https://doi.org/10.1021/jm960062t CrossRefPubMedGoogle Scholar
  9. 9.
    Dominguez JN, León C, Rodrigues J, de Dominguez NG, Gut J, Rosenthal PJ (2005) Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J Med Chem 48:3654–3658.  https://doi.org/10.1021/jm058208o CrossRefPubMedGoogle Scholar
  10. 10.
    Venkatachalam TK, Mao C, Uckun FM (2004) Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg Med Chem 12:4275–4284.  https://doi.org/10.1016/j.bmc.2004.04.050 CrossRefPubMedGoogle Scholar
  11. 11.
    Tang LN, Wang FP (2008) Electrochemical evaluation of allyl thiourea layers on copper surface. Corros Sci 50:1156–1160.  https://doi.org/10.1016/j.corsci.2007.11.030 CrossRefGoogle Scholar
  12. 12.
    Wenzel AG, Jacobsen EN (2002) Asymmetric catalytic Mannich reactions catalyzed by urea derivatives: enantioselective synthesis of beta-aryl-beta-amino acids. J Am Chem Soc 124:12964–12965.  https://doi.org/10.1021/ja028353g CrossRefPubMedGoogle Scholar
  13. 13.
    Zheng W, Yates SR, Papiernik SK, Wang Q (2006) Reducing 1,3-dichloropropene emissions from soil columns amended with thiourea. Environ Sci Technol 40:2402–2407.  https://doi.org/10.1021/es051889s CrossRefPubMedGoogle Scholar
  14. 14.
    Ludovici DW, Kukla MJ, Grous PG, Krishnan S, Andries K, de Bethune MP, Azijn H, Pauwels R, De Clercq E, Arnold E, Janssen PAJ (2001) Evolution of anti-HIV drug candidates. Part 1: from α-anilinophenylacetamide (α-APA) to imidoyl thiourea (ITU). Bioorg Med Chem Lett 11:2225–2228.  https://doi.org/10.1016/S0960-894X(01)00410-3 CrossRefPubMedGoogle Scholar
  15. 15.
    Thakur AS, Deshmukh R, Jha AK, Sudhir Kumar P (2018) Molecular docking study and anticonvulsant activity of synthesized 4-((4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)urea/thiourea derivatives. J King Saud Univ Sci 30:330–336.  https://doi.org/10.1016/j.jksus.2016.12.006 CrossRefGoogle Scholar
  16. 16.
    Yonova PA, Stoilkova GM (2004) Synthesis and biological activity of urea and thiourea derivatives from 2-aminoheterocyclic compounds. J Plant Growth Regul 23:280–291.  https://doi.org/10.1007/BF02637251 CrossRefGoogle Scholar
  17. 17.
    White AD, Creswell MW, Chucholowski AW, Blankley CJ, Wilson WM, Bousley FR, Essenberg AD, Hemelehle KL, Krause BR, Stanfield RL, Dominick MA, Neub M (1996) Heterocyclic ureas: inhibitors of acyl-CoA:cholesterol O-acyltransferase as hypocholesterolemic agents. J Med Chem 39:4382–4395.  https://doi.org/10.1021/jm960404v CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wilkerson MW, Akamike E, Cheatham WW, Hollis YA, Collins RD, DeLucca I, Lam PY, Ru Y (1996) HIV protease inhibitory bis-benzamide cyclic ureas: a quantitative structure-activity relationship analysis. J Med Chem 39:4299–4312.  https://doi.org/10.1021/jm9602773 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mugumbate G, Overington JP (2015) The relationship between target-class and the physicochemical properties of antibacterial drugs. Bioorg Med Chem 23:5218–5224.  https://doi.org/10.1016/j.bmc.2015.04.063 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Syrjänen L, Kuuslahti M, Tolvanen M, Vullo D, Parkkila S, Supuran CT (2015) The β-carbonic anhydrase from the malaria mosquito Anopheles gambiae is highly inhibited by sulfonamides. Bioorg Med Chem 23:2303–2309.  https://doi.org/10.1016/j.bmc.2015.03.081 CrossRefPubMedGoogle Scholar
  21. 21.
    Andrews KT, Fisher GM, Sumanadasa SDM, Skinner-Adams T, Moeker J, Lopez M, Poulsen SA (2013) Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment. Bioorg Med Chem Lett 23:6114–6117.  https://doi.org/10.1016/j.bmcl.2013.09.015 CrossRefPubMedGoogle Scholar
  22. 22.
    Naidu KM, Nagesh HN, Singh M, Sriram D, Yogeeswari P, Venkata Gowri K, Sekhar KVGC (2015) Novel amide and sulphonamide derivatives of 6-(piperazin-1-yl)phenanthridine as potent Mycobacterium tuberculosis H37Rv inhibitors. Eur J Med Chem 92:415–426.  https://doi.org/10.1016/j.ejmech.2015.01.013 CrossRefPubMedGoogle Scholar
  23. 23.
    Bhuva NH, Talpara PK, Singala PM, Gothaliya VK, Shah VH (2017) Synthesis and biological evaluation of pyrimidinyl sulphonamide derivatives as promising class of antitubercular agents. J Saudi Chem Soc 21:517–527.  https://doi.org/10.1016/j.jscs.2015.05.007 CrossRefGoogle Scholar
  24. 24.
    Awadallah FM, El-Waei TA, Hanna MM, Abbas SE, Ceruso M, Ecem Oz B, Guler OO, Supuran CT (2015) Synthesis, carbonic anhydrase inhibition and cytotoxic activity of novel chromone-based sulfonamide derivatives. Eur J Med Chem 96:425–435.  https://doi.org/10.1016/j.ejmech.2015.04.033 CrossRefPubMedGoogle Scholar
  25. 25.
    Ghorab MM, Ragab FA, Heiba HI, El-Gazzar MG, Zahran SS (2015) Synthesis, anticancer and radiosensitizing evaluation of some novel sulfonamide derivatives. Eur J Med Chem 92:682–692.  https://doi.org/10.1016/j.ejmech.2015.01.036 CrossRefPubMedGoogle Scholar
  26. 26.
    Carrillo AK, Guiguemde WA, Guy RK (2015) Evaluation of histone deacetylase inhibitors (HDACi) as therapeutic leads for human African trypanosomiasis (HAT). Bioorg Med Chem 23:5151–5155.  https://doi.org/10.1016/j.bmc.2014.12.066 CrossRefPubMedGoogle Scholar
  27. 27.
    Sharma R, Soman SS (2015) Design and synthesis of sulfonamide derivatives of pyrrolidine and piperidine as anti-diabetic agents. Eur J Med Chem 90:342–350.  https://doi.org/10.1016/j.ejmech.2014.11.041 CrossRefPubMedGoogle Scholar
  28. 28.
    Kanda Y, Kawanishi Y, Oda K, Sakata T, Mihara S, Asakura K, Kanemasa T, Ninomiya M, Fujimoto M, Kanoike T (2001) Synthesis and structure-activity relationships of potent and orally active sulfonamide ETB selective antagonists. Bioorg Med Chem 9:897–907.  https://doi.org/10.1016/S0968-0896(00)00305-9 CrossRefPubMedGoogle Scholar
  29. 29.
    Liu J, Liu Q, Yang X, Xu S, Zhang H, Bai R, Yao H, Jiang J, Shen M, Wu X, Xu J (2013) Design, synthesis, and biological evaluation of 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates. Bioorg Med Chem 21:7742–7751.  https://doi.org/10.1016/j.bmc.2013.10.017 CrossRefPubMedGoogle Scholar
  30. 30.
    Xu F, Xu H, Wang X, Zhang L, Wen Q, Zhang Y, Xu W (2014) Discovery of N-(3-((7H-purin-6-yl)thio)-4-hydroxynaphthalen-1-yl)-sulfonamide derivatives as novel protein kinase and angiogenesis inhibitors for the treatment of cancer: synthesis and biological evaluation. Part III. Bioorg Med Chem 22:1487–1495.  https://doi.org/10.1016/j.bmc.2013.11.052 CrossRefPubMedGoogle Scholar
  31. 31.
    Bag S, Tulsan R, Sood A, Cho H, Redjeb H, Zhou W, LeVine H III, Török B, Török M (2015) Sulfonamides as multifunctional agents for Alzheimer’s disease. Bioorg Med Chem Lett 25:626–630.  https://doi.org/10.1016/j.bmcl.2014.12.006 CrossRefPubMedGoogle Scholar
  32. 32.
    Ma J, Lu N, Qin W, Xu R, Wang Y, Chen X (2006) Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides. Ecotoxicol Environ Saf 63:268–274.  https://doi.org/10.1016/j.ecoenv.2004.12.002 CrossRefPubMedGoogle Scholar
  33. 33.
    Wills AJ, Ghosh YK, Balasubramanian SJ (2002) Synthesis of a polymer-supported oxazolidine aldehyde for asymmetric chemistry. J Org Chem 67:6646–6652.  https://doi.org/10.1021/jo0203239 CrossRefPubMedGoogle Scholar
  34. 34.
    Han C, Shen R, Su S, Porco JA (2004) Copper-mediated synthesis of N-acyl vinylogous carbamic acids and derivatives: synthesis of the antibiotic CJ-15,801. Org Lett 6:27–30.  https://doi.org/10.1021/ol0360041 CrossRefPubMedGoogle Scholar
  35. 35.
    Smith AB, Freez BS, LaMarche MJ, Hirose T, Brouard I, Rucker RV, Xian M, Sundermann KF, Shaw SJ, Burlingame MA, Horwitz SB, Myles DC (2005) Design, synthesis, and evaluation of carbamate-substituted analogues of (+)-discodermolide. Org Lett 7:311–314.  https://doi.org/10.1021/ol047686a CrossRefPubMedGoogle Scholar
  36. 36.
    Dangerfield EM, Timmer MSM, Stocker BL (2009) Total synthesis without protecting groups: pyrrolidines and cyclic carbamates. Org Lett 11:535–538.  https://doi.org/10.1021/ol802484y CrossRefPubMedGoogle Scholar
  37. 37.
    Ray S, Chaturvedi D (2004) Application of organic carbamates in drug design. Part 1: anticancer agents-recent reports. Drugs Future 29:343–357.  https://doi.org/10.1358/dof.2004.029.04.787236 CrossRefGoogle Scholar
  38. 38.
    Rahmanthullan SM, Tidwell RR, Jones SK, Hall JE, Boykin DW (2008) Carbamate prodrugs of N-alkylfuramidines. Eur J Med Chem 43:174–177.  https://doi.org/10.1016/j.ejmech.2007.03.009 CrossRefGoogle Scholar
  39. 39.
    Thomas LC (1974) Interpretation of the infrared spectra of organophosphorus compounds. Hyden and Son, LondonGoogle Scholar
  40. 40.
    Song B, Zhang H, Wang H, Yang S, Jin L, Hu D, Pang L, Xue W (2005) Synthesis and antiviral activity of novel chiral cyanoacrylate derivatives. J Agric Food Chem 53:7886–7891.  https://doi.org/10.1021/jf051050w CrossRefPubMedGoogle Scholar
  41. 41.
    Al-Bakri AG, Afifi FU (2007) Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration. J Microbiol Methods 68:19–25.  https://doi.org/10.1016/j.mimet.2006.05.013 CrossRefPubMedGoogle Scholar
  42. 42.
    Cotelle N, Bemier JL, Catteau JP, Pommery J, Wallet JC, Gaydou EM (1996) Antioxidant properties of hydroxy-flavones. Free Radic Biol Med 20:35–43.  https://doi.org/10.1016/0891-5849(95)02014-4 CrossRefPubMedGoogle Scholar
  43. 43.
    Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841.  https://doi.org/10.1016/0006-2952(88)90169-4 CrossRefPubMedGoogle Scholar
  44. 44.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791.  https://doi.org/10.1002/jcc.21256 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ghosh D, Lo J, Morton D, Valette D, Xi J, Griswold J, Hubbell S, Egbuta C, Jiang W, An J, Davies HML (2012) Novel aromatase inhibitors by structure-guided design. J Med Chem 55:8464–8476.  https://doi.org/10.1021/jm300930n CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ter Haar E, Coll JT, Austen DA, Hsiao HM, Swenson L, Jain J (2001) Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol 8:593–596.  https://doi.org/10.1038/89624 CrossRefPubMedGoogle Scholar
  47. 47.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Mandala Chandrasekhar
    • 1
  • Gandavaram Syam Prasad
    • 1
  • Chintha Venkataramaiah
    • 2
  • Chamarthi Naga Raju
    • 1
    Email author
  • Kalluru Seshaiah
    • 1
  • Wudayagiri Rajendra
    • 2
  1. 1.Department of ChemistrySri Venkateswara UniversityTirupatiIndia
  2. 2.Department of ZoologySri Venkateswara UniversityTirupatiIndia

Personalised recommendations