5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis

  • Ahmad ShaabaniEmail author
  • Mohammad Taghi Nazeri
  • Ronak Afshari
Comprehensive Review


5-Amino-pyrazoles have proven to be a class of fascinating and privileged organic tools for the construction of diverse heterocyclic or fused heterocyclic scaffolds. This review presents comprehensively the applications of 5-amino-pyrazoles as versatile synthetic building blocks in the synthesis of remarkable organic molecules with an emphasis on versatile functionalities. Following a brief introduction of synthesis methods, planning strategies to construct organic compounds, particularly diverse heterocyclic scaffolds, such as poly-substituted heterocyclic compounds and fused heterocyclic compounds via 5-amino-pyrazoles, have been summarized. Fused heterocycles are classified as bicyclic, tricyclic, tetracyclic, and spiro-fused pyrazole derivatives. These outstanding compounds synthesized via wide variety of approaches include conventional reactions, one-pot multi-component reactions, cyclocondensation, cascade/tandem protocols, and coupling reactions. 5-Amino-pyrazoles represent a class of promising functional reagents, similar to the biologically active compounds, highlighted with diverse applications especially in the field of pharmaceutics and medicinal chemistry. Notably, this critical review covers the articles published from 1981 to 2018.

Graphical abstract


5-Amino-pyrazoles Heterocyclic chemistry Multi-component reactions Fused heterocyclic compounds Medicinal chemistry 



We gratefully acknowledge financial support from the Iran National Science Foundation (INSF) and the Research Council of Shahid Beheshti University.


  1. 1.
    Hollis A, Ahmed Z (2013) Preserving antibiotics, rationally. N Engl J Med 369:2474–2476PubMedCrossRefGoogle Scholar
  2. 2.
    Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA (2002) Structure–activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45:740–743PubMedCrossRefGoogle Scholar
  3. 3.
    Cabrele C, Reiser O (2016) The modern face of synthetic heterocyclic chemistry. J Org Chem 81:10109–10125PubMedCrossRefGoogle Scholar
  4. 4.
    Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd 48:7–10CrossRefGoogle Scholar
  5. 5.
    Yamada M, Honma I (2005) Anhydrous proton conducting polymer electrolytes based on poly (vinylphosphonic acid)-heterocycle composite material. Polymer 46:2986–2992CrossRefGoogle Scholar
  6. 6.
    Kusama H, Orita H, Sugihara H (2008) TiO2 band shift by nitrogen-containing heterocycles in dye-sensitized solar cells: a periodic density functional theory study. Langmuir 24:4411–4419PubMedCrossRefGoogle Scholar
  7. 7.
    Dedeian K, Shi J, Shepherd N, Forsythe E, Morton DC (2005) Photophysical and electrochemical properties of heteroleptic tris-cyclometalated iridium (III) complexes. Inorg Chem 44:4445–4447PubMedCrossRefGoogle Scholar
  8. 8.
    Kuwata S, Ikariya T (2011) β-protic pyrazole and N-heterocyclic carbene complexes: synthesis, properties, and metal–ligand cooperative bifunctional catalysis. Chem Eur J 17:3542–3556PubMedCrossRefGoogle Scholar
  9. 9.
    Vitaku E, Smith DT, Njardarson JT (2014) Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among us FDA approved pharmaceuticals: miniperspective. J Med Chem 57:10257–10274PubMedCrossRefGoogle Scholar
  10. 10.
    Ohi N, Sato N, Soejima M, Doko T, Terauchi T, Naoe Y, Motoki T (2008) Pyrazole compound and medicinal composition containing the same. Google patentsGoogle Scholar
  11. 11.
    Kumar V, Kaur K, Gupta GK, Sharma AK (2013) Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem 69:735–753PubMedCrossRefGoogle Scholar
  12. 12.
    Kumar KA, Jayaroopa P (2013) Pyrazoles: synthetic strategies and their pharmaceutical applications—an overview. Int J PharmTech Res 5:1473–1486Google Scholar
  13. 13.
    Noe F, Fowden L (1959) Α-amino-β-(pyrazolyl-N) propionic acid: a new amino-acid from Citrullus vulgaris (water melon). Nature 184:BA-69CrossRefGoogle Scholar
  14. 14.
    Ahadi S, Mirzaei P, Bazgir A (2010) One-pot, three-component synthesis of 3-(5-amino-1H-pyrazol-4-yl)-3-(2-hydroxy-4, 4-dimethyl-6-oxocyclohex-1-enyl) indolin-2-ones. Synth Commun 40:1224–1230CrossRefGoogle Scholar
  15. 15.
    Wong FF, Wang L-Y, Uramaru N, Chiang H-H (2014) Synthesis and structural identification of 5-amino-4-hydroxyiminopyrazoles and (E)-N1-aryl-3-aryl-4-[(substituted pyrazolyl) diazenyl] pyrazoles from 5-aminopyrazoles with ethyl nitrite or sodium nitrite. Tetrahedron 70:7977–7982CrossRefGoogle Scholar
  16. 16.
    Thomas K (2012) In documents on pain drug, signs of doubt and deception. New York Times, June 29Google Scholar
  17. 17.
    Maranhão-Filho P, Dib E, Rocha CE, Santos Filho WR (2016) Neurite óptica isquêmica devida à dose inédita de sildenafila. Rev Bras Neurol 51:48–52Google Scholar
  18. 18.
    Ramazani A, Souldozi A (2008) Iminophosphorane-mediated one-pot synthesis of 1,3,4-oxadiazole derivatives. Arkivoc 16:235–242Google Scholar
  19. 19.
    Marinozzi M, Marcelli G, Carotti A, Natalini B (2014) One-pot, telescoped synthesis of N-aryl-5-aminopyrazoles from anilines in environmentally benign conditions. RSC Adv 4:7019–7023CrossRefGoogle Scholar
  20. 20.
    Basu S, Prathipati P, Thorat S, Ansari S, Patel M, Jain V, Jinugu RR, Niranjan S, De S, Reddy S (2017) Rational design, synthesis, and structure–activity relationships of 5-amino-1H-pyrazole-4-carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem 25:67–74PubMedCrossRefGoogle Scholar
  21. 21.
    Das J, Moquin RV, Dyckman AJ, Li T, Pitt S, Zhang R, Shen DR, McIntyre KW, Gillooly K, Doweyko AM (2010) 5-amino-pyrazoles as potent and selective p38α inhibitors. Bioorg Med Chem Lett 20:6886–6889PubMedCrossRefGoogle Scholar
  22. 22.
    Wiley RH, Behr LC (1967) Pyrazoles, pyrazolines, pyrazolidines, indazoles and condensed rings. Wiley, HobokenCrossRefGoogle Scholar
  23. 23.
    Wiley RH, Wiley PF (1964) Pyrazolones, pyrazolidones, and derivatives, vol 20. Wiley, HobokenCrossRefGoogle Scholar
  24. 24.
    Fustero S, Sánchez-Roselló M, Barrio P, Simón-Fuentes A (2011) From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem Rev 111:6984–7034PubMedCrossRefGoogle Scholar
  25. 25.
    Aggarwal R, Kumar V, Kumar R, Singh SP (2011) Approaches towards the synthesis of 5-aminopyrazoles. Beilstein J Org Chem 7:179PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Abu Elmaati TM, El-Taweel FM (2004) New trends in the chemistry of 5-aminopyrazoles. J Heterocycl Chem 41:109–134CrossRefGoogle Scholar
  27. 27.
    Bagley MC, Davis T, Dix MC, Widdowson CS, Kipling D (2006) Microwave-assisted synthesis of N-pyrazole ureas and the p38α inhibitor BIRB 796 for study into accelerated cell ageing. Org Biomol Chem 4:4158–4164PubMedCrossRefGoogle Scholar
  28. 28.
    Su WN, Lin TP, Cheng KM, Sung KC, Lin SK, Wong FF (2010) An efficient one-pot synthesis of N-(1, 3-diphenyl-1H-pyrazol-5-yl) amides. J Heterocycl Chem 47:831–837CrossRefGoogle Scholar
  29. 29.
    Kim BR, Sung GH, Ryu KE, Lee S-G, Yoon HJ, Shin D-S, Yoon Y-J (2015) Direct synthesis of pyrazoles from esters using tert-butoxide-assisted C–(C [double bond, length as m-dash] O) coupling. Chem Commun 51:9201–9204CrossRefGoogle Scholar
  30. 30.
    Zora M, Kivrak A (2011) Synthesis of pyrazoles via CuI-mediated electrophilic cyclizations of α, β-alkynic hydrazones. J Org Chem 76:9379–9390PubMedCrossRefGoogle Scholar
  31. 31.
    Reddy GJ, Latha D, Rao KS (2004) A clean and rapid synthesis of 5-amino and 5-alkoxycarbonylpyrazoles using montomorillonite under acid free conditions. Org Prep Proced Int 36:494–498CrossRefGoogle Scholar
  32. 32.
    Kirkham JD, Edeson SJ, Stokes S, Harrity JP (2012) Synthesis of ynone trifluoroborates toward functionalized pyrazoles. Org Lett 14:5354–5357PubMedCrossRefGoogle Scholar
  33. 33.
    Senadi GC, Hu W-P, Lu T-Y, Garkhedkar AM, Vandavasi JK, Wang J-J (2015) I2–TBHP-catalyzed oxidative cross-coupling of N-sulfonyl hydrazones and isocyanides to 5-aminopyrazoles. Org Lett 17:1521–1524PubMedCrossRefGoogle Scholar
  34. 34.
    Ma C, Wen P, Li J, Han X, Wu Z, Huang G (2016) Palladium and copper cocatalyzed intermolecular cyclization reaction: synthesis of 5-aminopyrazole derivatives. Adv Synth Catal 358:1073–1077CrossRefGoogle Scholar
  35. 35.
    Suryakiran N, Prabhakar P, Venkateswarlu Y (2008) Facile tert-butoxycarbonylation of alcohols, phenols, and amines using BiCl3 as a mild and efficient catalyst. Synth Commun 38:177–185CrossRefGoogle Scholar
  36. 36.
    Motamedi A, Sattari E, Mirzaei P, Armaghan M, Bazgir A (2014) An efficient and green synthesis of phthalide-fused pyrazole and pyrimidine derivatives. Tetrahedron Lett 55:2366–2368CrossRefGoogle Scholar
  37. 37.
    Kim MM, Ruck RT, Zhao D, Huffman MA (2008) Green iodination of pyrazoles with iodine/hydrogen peroxide in water. Tetrahedron Lett 49:4026–4028CrossRefGoogle Scholar
  38. 38.
    Shaabani A, Afshari R, Hooshmand SE (2016) Passerini three-component cascade reactions in deep eutectic solvent: an environmentally benign and rapid system for the synthesis of α-acyloxyamides. Res Chem Intermed 42:5607–5616CrossRefGoogle Scholar
  39. 39.
    Ahadi S, Shakibaei GI, Mirzaei P, Bazgir A (2008) A clean synthesis of 3, 3-bis (5-amino-1H-pyrazol-4-yl)-indolin-2-one derivatives. Heterocycles 75:2293–2299CrossRefGoogle Scholar
  40. 40.
    Khorrami AR, Faraji F, Bazgir A (2010) Ultrasound-assisted three-component synthesis of 3-(5-amino-1H-pyrazol-4-yl)-3-(2-hydroxy-4, 4-dimethyl-6-oxocyclohex-1-enyl) indolin-2-ones in water. Ultrason Sonochem 17:587–591PubMedCrossRefGoogle Scholar
  41. 41.
    Chang E-C, Chen C-Y, Wang L-Y, Huang Y-Y, Yeh M-Y, Wong FF (2013) Synthesis of 5-arylamino-1-arylpyrazoles from 5-aminopyrazoles with arylhalides via CuI catalyzed Ullman coupling reaction. Tetrahedron 69:570–576CrossRefGoogle Scholar
  42. 42.
    Antilla JC, Baskin JM, Barder TE, Buchwald SL (2004) Copper–diamine-catalyzed N-arylation of pyrroles, pyrazoles, indazoles, imidazoles, and triazoles. J Org Chem 69:5578–5587PubMedCrossRefGoogle Scholar
  43. 43.
    Ma D, Cai Q, Zhang H (2003) Mild method for Ullmann coupling reaction of amines and aryl halides. Org Lett 5:2453–2455PubMedCrossRefGoogle Scholar
  44. 44.
    Monnier F, Taillefer M (2009) Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew Chem Int Ed 48:6954–6971CrossRefGoogle Scholar
  45. 45.
    Dounay AB, Overman LE (2003) The asymmetric intramolecular heck reaction in natural product total synth. Chem Rev 103:2945–2964PubMedCrossRefGoogle Scholar
  46. 46.
    Zeni G, Larock RC (2004) Synthesis of heterocycles via palladium π-olefin and π-alkyne chemistry. Chem Rev 104:2285–2310PubMedCrossRefGoogle Scholar
  47. 47.
    D’Souza DM, Mueller TJ (2007) Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 36:1095–1108PubMedCrossRefGoogle Scholar
  48. 48.
    Abdelmoniem AM, Ramadan MA, Ghozlan SAS, Abdelhamid IA (2017) New synthesis of N-(1H-pyrazol-5-yl)-hexahydroquinoline-3-carbonitrile and octahydropyrazolo [4′, 3′: 5, 6] pyrimido [1,2-a] quinoline-6-carbonitrile derivatives from the cyclic β-enaminones. J Heterocycl Chem 54:1193–1198CrossRefGoogle Scholar
  49. 49.
    Sidhom A, Soulé J-F, Doucet H, Allouche F (2018) Reactivity of 5-aminopyrazoles bearing a cyclopropyl group at C3-position in palladium-catalyzed direct C4-arylation. Catal Commun 115:55–58CrossRefGoogle Scholar
  50. 50.
    Jedinák LS, Zátopková RT, Zemánková H, Šustková A, Cankař P (2016) The suzuki–Miyaura cross-coupling reaction of halogenated aminopyrazoles: method development, scope, and mechanism of dehalogenation side reaction. J Org Chem 82:157–169PubMedCrossRefGoogle Scholar
  51. 51.
    Lee S, Park SB (2009) An efficient one-step synthesis of heterobiaryl pyrazolo [3,4-b] pyridines via indole ring opening. Org Lett 11:5214–5217PubMedCrossRefGoogle Scholar
  52. 52.
    Prakash R, Shekarrao K, Saikia P, Gogoi S, Boruah RC (2015) Palladium mediated regioselective intramolecular heck reaction: synthesis of 1,3,4-trisubstituted pyrazolo [3,4-b] pyridines, 3H-pyrazolo [3,4-c] isoquinolines and 3 h-pyrazolo [4, 3-f][1, 7] naphthyridines. RSC Adv 5:21099–21102CrossRefGoogle Scholar
  53. 53.
    Li J, Zhang J, Yang H, Jiang G (2017) Assembly of diversely substituted quinolines via aerobic oxidative aromatization from simple alcohols and anilines. J Org Chem 82:3284–3290PubMedCrossRefGoogle Scholar
  54. 54.
    Koyioni M, Manoli M, Manolis MJ, Koutentis PA (2014) Reinvestigating the reaction of 1H-pyrazol-5-amines with 4, 5-dichloro-1,2,3-dithiazolium chloride: a route to pyrazolo [3,4-c] isothiazoles and pyrazolo [3,4-d] thiazoles. J Org Chem 79:4025–4037PubMedCrossRefGoogle Scholar
  55. 55.
    Rizk H, Ibrahim S, El-Borai M (2015) Synthesis, fastness properties, color assessment and antimicrobial activity of some azo reactive dyes having pyrazole moiety. Dyes Pigments 112:86–92CrossRefGoogle Scholar
  56. 56.
    Rizk H, El-Badawi M, Ibrahim S, El-Borai M (2011) Synthesis of some novel heterocyclic dyes derived from pyrazole derivatives. Arabian J Chem 4:37–44CrossRefGoogle Scholar
  57. 57.
    Chen J, Liu W, Ma J, Xu H, Wu J, Tang X, Fan Z, Wang P (2012) Synthesis and properties of fluorescence dyes: tetracyclic pyrazolo [3,4-b] pyridine-based coumarin chromophores with intramolecular charge transfer character. J Org Chem 77:3475–3482PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang Z-T, Liang Y, Ma Y-Q, Xue D, Yang J-L (2010) One-step synthesis of diarylpyrazolo [3,4-b] pyridines from isoflavones. J Comb Chem 12:600–603PubMedCrossRefGoogle Scholar
  59. 59.
    Miliutina M, Janke J, Hassan S, Zaib S, Iqbal J, Lecka J, Sévigny J, Villinger A, Friedrich A, Lochbrunner S (2018) A domino reaction of 3-chlorochromones with aminoheterocycles. Synthesis of pyrazolopyridines and benzofuropyridines and their optical and ecto-5′-nucleotidase inhibitory effects. Org Biomol Chem 16:717–732PubMedCrossRefGoogle Scholar
  60. 60.
    Komarov K, Chkanikov N, Galakhov M, Kolomietz A, Fokin A (1990) Reaction of 1, 1-dicyano-2, 2-bis (trifluoromethyl) ethylene with arylamines. J Fluor Chem 47:59–69CrossRefGoogle Scholar
  61. 61.
    Dubovtsev AY, Dmitriev MV, Silaichev PS, Antonov DI, Maslivets AN (2017) Formal [3 + 3] cyclocondensation of 4-acyl-1H-pyrrole-2, 3-diones with five-membered cyclic enamines to form substituted 1H-pyrazolo [3,4-b] pyridines and isoxazolo [5,4-b] pyridines. Synthesis 49:2223–2230CrossRefGoogle Scholar
  62. 62.
    Bogza SL, Kobrakov KI, Malienko AA, Perepichka IF, Sujkov SY, Bryce MR, Lyubchik SB, Batsanov AS, Bogdan NM (2005) A versatile synthesis of pyrazolo [3,4-c] isoquinoline derivatives by reaction of 4-aryl-5-aminopyrazoles with aryl/heteroaryl aldehydes: the effect of the heterocycle on the reaction pathways. Org Biomol Chem 3:932–940PubMedCrossRefGoogle Scholar
  63. 63.
    Ghaedi A, Bardajee G, Mirshokrayi A, Mahdavi M, Shafiee A, Akbarzadeh T (2015) Facile, novel and efficient synthesis of new pyrazolo [3,4-b] pyridine products from condensation of pyrazole-5-amine derivatives and activated carbonyl groups. RSC Adv 5:89652–89658CrossRefGoogle Scholar
  64. 64.
    Chebanov VA, Sakhno YI, Desenko SM, Chernenko VN, Musatov VI, Shishkina SV, Shishkin OV, Kappe CO (2007) Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron 63:1229–1242CrossRefGoogle Scholar
  65. 65.
    Shi DQ, Shi JW, Yao H, Jiang H, Wang XS (2007) An efficient synthesis of pyrazolo [3,4-b] pyridine derivatives in aqueous media. J Chin Chem Soc 54:1341–1345CrossRefGoogle Scholar
  66. 66.
    Quiroga J, Cruz S, Insuasty B, Abonia R, Cobo J, Sanchez A, Nogueras M, Low JN (2001) Synthesis and structural analysis of 5-cyanodihydropyrazolo [3,4-b] pyridines. J Heterocycl Chem 38:53–60CrossRefGoogle Scholar
  67. 67.
    Nam N, Grandberg I, Sorokin V (2003) Condensation of 1-substituted 5-aminopyrazoles with β-dicarbonyl compounds. Chem Heterocycl Compd 39:937–942CrossRefGoogle Scholar
  68. 68.
    Iaroshenko VO, Sevenard DV, Kotljarov A, Volochnyuk DM, Tolmachev AO, Sosnovskikh VY (2009) A convenient synthesis of fluorinated pyrazolo [3,4-b] pyridine and pyrazolo [3,4-d] pyrimidine nucleosides. Synthesis 2009:731–740CrossRefGoogle Scholar
  69. 69.
    Rusinov V, Petrov AY, Chupakhin O (1992) Nitroazines. 20. Simple syntheses of nitropyrazolopyridines from aliphatic nitrosynthons and aminopyrazoles. Chem Heterocycl Compd 28:1335–1339CrossRefGoogle Scholar
  70. 70.
    Pedrosa LF, de Macedo WP, Furtado AC, Guedes GP, Borges JC, Resende JA, Vaz MG, Bernardino AM, de Souza MC (2014) Synthesis and characterization of new 1H-pyrazolo [3,4-b] pyridine phosphoramidate derivatives. Arkivoc 4:38–50Google Scholar
  71. 71.
    Abdel-Aziz HA, Saleh TS, El-Zahabi HS (2010) Facile synthesis and in vitro antitumor activity of some pyrazolo [3,4-b] pyridines and pyrazolo [1,5-a] pyrimidines linked to a thiazolo [3,2-a] benzimidazole moiety. Arch Pharm 343:24Google Scholar
  72. 72.
    Patil SP, Toche RB (2011) Use of sodium salt of cyclic β-formylester for synthesis of dihydro-2H-furo [2,3-d] pyrazolo [3,4-b] pyridines and pyrazolo [3,4-b] pyrrolo [2,3-d] pyridines. Monatsh Chem 142:1193–1201CrossRefGoogle Scholar
  73. 73.
    Petrov AA, Kasatochkin AN, Selivanov SI (2015) A facile synthesis of regioisomeric 4-amino-and 6-amino-3-arylpyrazolo [3,4-b] pyridine-5-carbonitriles. Mendeleev Commun 25:382–383CrossRefGoogle Scholar
  74. 74.
    Yue X, Jin H, Liu H, Rosenberg AJ, Klein RS, Tu Z (2015) A potent and selective C-11 labeled pet tracer for imaging sphingosine-1-phosphate receptor 2 in the cns demonstrates sexually dimorphic expression. Org Biomol Chem 13:7928–7939PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dorn H, Zubek A (1968) Potentielle cytostatica, XVI. Bicyclische systeme aus acetessigester und 5-amino-1-methyl-, 5-amino-1-benzyl-sowie 3(5)-amino-pyrazol. Eur J Inorg Chem 101:3265–3277Google Scholar
  76. 76.
    Petrov A, Kasatochkin A, Emelina E, Haukka M (2012) Regioisomeric 4-amino-and 6-aminopyrazolo [3,4-b] pyridines: synthesis and structure determination by NMR spectroscopy and X-ray diffraction. Russ Chem Bull 61:891–896CrossRefGoogle Scholar
  77. 77.
    Medeiros AC, Borges JC, Becker KM, Rodrigues RF, Leon LL, Canto-Cavalheiro M, Bernardino AM, de Souzaa MC, Pedrosa LF (2018) Synthesis of new conjugates 1H-pyrazolo [3,4-b] pyridine-phosphoramidate and evaluation against Leishmania amazonensis. J Braz Chem Soc 29:159–167CrossRefGoogle Scholar
  78. 78.
    Saikia P, Gogoi S, Boruah RC (2015) Carbon–carbon bond cleavage reaction: synthesis of multisubstituted pyrazolo [1,5-a] pyrimidines. J Org Chem 80:6885–6889PubMedCrossRefGoogle Scholar
  79. 79.
    Grosse S, Pillard C, Massip S, Léger JM, Jarry C, Bourg S, Bernard P, Guillaumet G (2012) Efficient synthesis and first regioselective C-3 direct arylation of imidazo [1,2-b] pyrazoles. Chem Eur J 18:14943–14947PubMedCrossRefGoogle Scholar
  80. 80.
    Golubev P, Karpova EA, Pankova AS, Sorokina M, Kuznetsov MA (2016) Regioselective synthesis of 7-(trimethylsilylethynyl) pyrazolo [1,5-a] pyrimidines via reaction of pyrazolamines with enynones. J Org Chem 81:11268–11275PubMedCrossRefGoogle Scholar
  81. 81.
    Schmitt DC, Niljianskul N, Sach NW, Trujillo JI (2018) A parallel approach to 7-(hetero) arylpyrazolo [1,5-a] pyrimidin-5-ones. ACS Comb Sci 20:256–260PubMedCrossRefGoogle Scholar
  82. 82.
    Foley C, Shaw A, Hulme C (2017) Oxidative deaminations and deisatinylations of Ugi-Azide and Ugi-3CR products: a two-step MCR-oxidation protocol toward functionalized α-ketoamides and α-ketotetrazoles. Org Lett 19:2238–2241PubMedCrossRefGoogle Scholar
  83. 83.
    Quiroga J, Portilla J, Abonía R, Insuasty B, Nogueras M, Cobo J (2008) Regioselective synthesis of novel substituted pyrazolo [1,5-a] pyrimidines under solvent-free conditions. Tetrahedron Lett 49:6254–6256CrossRefGoogle Scholar
  84. 84.
    Hassaneen HM, Abdallah TA, Abdelhadi HA, Hassaneen HM, Pagni RM (2003) Polyfunctional fused heterocyclic compounds via indene-1, 3-diones. Heteroat Chem 14:491–497CrossRefGoogle Scholar
  85. 85.
    Kim I, Song JH, Park CM, Jeong JW, Kim HR, Ha JR, No Z, Hyun Y-L, Cho YS, Kang NS (2010) Design, synthesis, and evaluation of 2-aryl-7-(3′, 4′-dialkoxyphenyl)-pyrazolo [1,5-a] pyrimidines as novel pde-4 inhibitors. Bioorg Med Chem Lett 20:922–926PubMedCrossRefGoogle Scholar
  86. 86.
    Mokhtar M, Saleh TS, Basahel SN (2012) Mg–Al hydrotalcites as efficient catalysts for aza-Michael addition reaction: a green protocol. J Mol Catal Chem 353:122–131CrossRefGoogle Scholar
  87. 87.
    Al-Shiekh MA, El-Din AMS, Hafez EA, Elnagdi MH (2004) α-enones in heterocyclic synthesis, Part I. Classical synthetic and environmentally friendly synthetic approaches to alkyl and acyl azoles and azines. J Chem Res 2004:174–179CrossRefGoogle Scholar
  88. 88.
    Thomas A, Chakraborty M, Ila H, Junjappa H (1990) Cyclocondensation of oxoketene dithioacetals with 3-aminopyrazoles: a facile highly regioselective general route to substituted and fused pyrazolo a] pyrimidines. Tetrahedron 46:577–586CrossRefGoogle Scholar
  89. 89.
    Elgemeie GE, Fathy NM, Faddah LM, Ebeid MY, Elsaid MK (1991) Reactions with 3, 5-diaminopyrazoles: new routes to pyrazolo [1,5-α] pyrimidines. Arch Pharm 324:149–152CrossRefGoogle Scholar
  90. 90.
    Rádl S, Blahovcová M, Plaček L, Pekárek T, Havlíček J (2010) Synthesis of some impurities and/or degradation products of zaleplon. J Heterocycl Chem 47:276–283Google Scholar
  91. 91.
    Shidlovskii A, Peregudov A, Averkiev B, Antipin MY, Chkanikov N (2004) Heterocyclization of 2-chloro-1-cyano-1-diethoxyphosphoryl-2-trifluoromethylethylene and 2-chloro-2-chlorodifluoromethyl-1-cyano-1-diethoxyphosphorylethylene. Russ Chem Bull 53:2060–2070CrossRefGoogle Scholar
  92. 92.
    Quiroga J, Portilla J, Abonía R, Insuasty B, Nogueras M, Cobo J (2008) Synthesis of novel 5-amino-1-aroylpyrazoles. Tetrahedron Lett 49:5943–5945CrossRefGoogle Scholar
  93. 93.
    Hassan AS, Mady MF, Awad HM, Hafez TS (2017) Synthesis and antitumor activity of some new pyrazolo [1,5-a] pyrimidines. Chin Chem Lett 28:388–393CrossRefGoogle Scholar
  94. 94.
    Al-Adiwish WM, Tahir M, Siti-Noor-Adnalizawati A, Hashim SF, Ibrahim N, Yaacob W (2013) Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo [1,5-a] pyrimidine and pyrazolo [5,1-c][1,2,4] triazine derivatives from new 5-aminopyrazoles. Eur J Med Chem 64:464–476PubMedCrossRefGoogle Scholar
  95. 95.
    Darweesh AF, Mekky AE, Salman AA, Farag AM (2016) Efficient, microwave-mediated synthesis of benzothiazole-and benzimidazole-based heterocycles. Res Chem Int 42:4341–4358CrossRefGoogle Scholar
  96. 96.
    Nagahara K, Kawano H, Sasaoka S, Ukawa C, Hirama T, Takada A, Cottam HB, Robins RK (1994) Reaction of 5-aminopyrazole derivatives with ethoxymethylene-malononitrile and its analogues. J Heterocycl Chem 31:239–243CrossRefGoogle Scholar
  97. 97.
    Farag AM, Dawood KM, Elmenoufy HA (2004) A convenient route to pyridones, pyrazolo [2,3-a] pyrimidines and pyrazolo [5,1-c] triazines incorporating antipyrine moiety. Heteroat Chem 15:508–514CrossRefGoogle Scholar
  98. 98.
    Emelina E, Petrov A, Firsov A (2007) Α-aminoazoles in syntheses of heterocycles. 3(5)-aminopyrazole-4-carbonitriles in the synthesis of pyrazolo [1,5-α] pyrimidines. Russ J Org Chem 43:471–473CrossRefGoogle Scholar
  99. 99.
    El-Borai MA, Rizk HF, Beltagy DM, El-Deeb IY (2013) Microwave-assisted synthesis of some new pyrazolopyridines and their antioxidant, antitumor and antimicrobial activities. Eur J Med Chem 66:415–422PubMedCrossRefGoogle Scholar
  100. 100.
    Gamal-Eldeen AM, Hamdy NA, Abdel-Aziz HA, El-Hussieny EA, Fakhr IM (2014) Induction of intrinsic apoptosis pathway in colon cancer HCT-116 cells by novel 2-substituted-5, 6, 7, 8-tetrahydronaphthalene derivatives. Eur J Med Chem 77:323–333PubMedCrossRefGoogle Scholar
  101. 101.
    Elmaati TMA, El-Taweel F (2003) Routes to pyrazolo [3,4-e][1, 4] thiazepine, pyrazolo [1,5-a] pyrimidine and pyrazole derivatives. J Chin Chem Soc 50:413–418CrossRefGoogle Scholar
  102. 102.
    Ali KA, Hosni HM, Ragab EA, El-Moez SIA (2012) Synthesis and antimicrobial evaluation of some new cyclooctanones and cyclooctane-based heterocycles. Arch Pharm 345:231–239CrossRefGoogle Scholar
  103. 103.
    Stepaniuk OO, Matvienko VO, Kondratov IS, Shishkin OV, Volochnyuk DM, Mykhailiuk PK, Tolmachev AA (2012) Regioselective reactions of ethyl (4, 5-dihydrofuran-3-yl)-2-oxoacetate and ethyl 2-(3,4-dihydro-2h-pyran-6-yl)-2-oxoacetate with 1-unsubstituted aminoazoles. Synthesis 44:895–902CrossRefGoogle Scholar
  104. 104.
    Raslan MA, Omran OA (2015) Synthesis and reactivity of enaminones: synthesis of some 1,3,4-thiadiazole linked to pyrazole, pyridine, benzimidazolopyrimidine, pyrazolopyrimidine, pyrazolotriazine and triazolotriazine derivatives. J Heterocycl Chem 53:1121–1123CrossRefGoogle Scholar
  105. 105.
    Dawood KM (2005) Synthesis of spiro-pyrazole-3, 3′-thiopyrano [2,3-b] pyridines and azolo[a] pyrido [2′, 3′: 5, 6] thiopyrano [3,4-d] pyrimidines as new ring systems with antifungal and antibacterial activities. J Heterocycl Chem 42:221–225CrossRefGoogle Scholar
  106. 106.
    Reddy GJ, Latha D, Pallavi K, Khalilullah M (2003) Synthesis of pyrazolo [1,5-a] pyrimido [4,3-d] benzopyans and 2-pyrazolo [1,5-a] pyrimidinyl phenols from the reaction of 5(3)-amino pyrazoles. Heterocycl Commun 9:453–456Google Scholar
  107. 107.
    Ammar YA, Aly MM, Al-Sehemi AAG, Salem MA, El-Gaby MS (2009) Cyanoacetanilides intermediates in heterocyclic synthesis. Part 5: preparation of hitherto unknown 5-aminopyrazole and pyrazolo [1,5-a] pyrimidine derivatives containing sulfamoyl moiety. J Chin Chem Soc 56:1064–1071CrossRefGoogle Scholar
  108. 108.
    Wendt MD, Kunzer A, Henry RF, Cross J, Pagano TG (2007) Regiochemistry of addition of aminoheterocycles to α-cyanocinnamonitriles: formation of aza-bridged bi-and tricycles. Tetrahedron Lett 48:6360–6363CrossRefGoogle Scholar
  109. 109.
    Quiroga J, Portilla J, Abonía R, Insuasty B, Nogueras M, Cobo J (2007) Regioselective synthesis of novel polyfunctionally substituted pyrazolo [1,5-a] pyrimidines under solvent-free conditions. Tetrahedron Lett 48:6352–6355CrossRefGoogle Scholar
  110. 110.
    Quiroga J, Mejía D, Insuasty B, Abonia R, Nogueras M, Sanchez A, Cobo J, Low J (2002) Synthesis of 6-(2-hydroxybenzoyl) pyrazolo [1,5-a] pyrimidines by reaction of 5-amino-1H-pyrazoles and 3-formylchromone. J Heterocycl Chem 39:51–54CrossRefGoogle Scholar
  111. 111.
    Al-Mousawi SM, Mohammad MA, Elnagdi MH (2001) Synthesis of new pyrazolo [1,5-a] pyrimidines and pyrazolo [3,4-b] pyridines. J Heterocycl Chem 38:989–991CrossRefGoogle Scholar
  112. 112.
    Daniels RN, Kim K, Lebois EP, Muchalski H, Hughes M, Lindsley CW (2008) Microwave-assisted protocols for the expedited synthesis of pyrazolo [1,5-a] and [3,4-d] pyrimidines. Tetrahedron Lett 49:305–310CrossRefGoogle Scholar
  113. 113.
    Petrov A, Kasatochkin A, Emelina E (2012) Study of regioselectivity of reactions between 3(5)-aminopyrazoles and 2-acetylcycloalkanones. Russ J Org Chem 48:1111–1120CrossRefGoogle Scholar
  114. 114.
    Britsun V, Esipenko A, Chernega A, Rusanov E, Lozinskii M (2007) Synthesis and reactions of 1-R-3-benzoyl-5-ethoxycarbonyl-6-oxo-1,2,3,6-tetrahydropyridine-2-thiones. Chem Heterocycl Compd 43:1411–1419CrossRefGoogle Scholar
  115. 115.
    Clarke D, Mares RW, McNab H (1997) Preparation and pyrolysis of 1-(pyrazol-5-yl)-1,2,3-triazoles and related compounds1. J Chem Soc Perkin Trans 1:1799–1804CrossRefGoogle Scholar
  116. 116.
    Shekarrao K, Kaishap PP, Gogoi S, Gogoi S, Boruah RC (2014) A facile synthesis of steroidal D-ring fused pyrazolo [1,5-a] pyrimidines. Tetrahedron Lett 55:5251–5255CrossRefGoogle Scholar
  117. 117.
    Solomyannii R, Pil’o S, Slivchuk S, Prokopenko V, Rusanov E, Brovarets V (2017) Synthesis of 5-methylsulfonylpyrimidines and their fused derivatives. Russ J Gen Chem 87:407–413CrossRefGoogle Scholar
  118. 118.
    Khalil MA, Raslan MA, Sayed SM (2017) Synthesis and reactivity of 3-oxoprop-1-en-1-olate derivative as a building block for the synthesis of azole and azine derivatives. J Heterocycl Chem 54:1845–1853CrossRefGoogle Scholar
  119. 119.
    Hassan AS, Moustafa GO, Awad HM (2017) Synthesis and in vitro anticancer activity of pyrazolo [1,5-a] pyrimidines and pyrazolo [3,4-d][1–3] triazines. Synth Commun 47:1963–1972CrossRefGoogle Scholar
  120. 120.
    Ahmed N, Badahdah K, Qassar H (2017) Novel quinoline bearing sulfonamide derivatives and their cytotoxic activity against MCF7 cell line. Med Chem Res 26:1201–1212CrossRefGoogle Scholar
  121. 121.
    Deng X-Q, Quan L-N, Song M-X, Wei C-X, Quan Z-S (2011) Synthesis and anticonvulsant activity of 7-phenyl-6, 7-dihydro-[1,2,4] triazolo [1,5-a] pyrimidin-5 (4H)-ones and their derivatives. Eur J Med Chem 46:2955–2963PubMedCrossRefGoogle Scholar
  122. 122.
    Quiroga J, Insuasty B, Hormaza A, Gamenara D, Dominguez L, Saldana J (1999) Synthesis, characterization and in vitro anthelmintic activity against Nippostrongylus brasiliensis of new 5-aryl-2-phenyl-6,7-dihydropyrazolo [1,5-a] pyrimidines. J Heterocycl Chem 36:11–13CrossRefGoogle Scholar
  123. 123.
    Golubev AS, Pasternak PV, Shidlovskii AF, Savelèva LN, Averkiev BB, Nesterov VN, Antipin MY, Peregudov AS, Chkanikov ND (2002) Synthesis and some heterocyclisation reactions of CF2H-and CF2Cl-substituted 1, 1-dicyanoethylenes. J Fluor Chem 114:63–74CrossRefGoogle Scholar
  124. 124.
    Pasternak PV, Averkiev BB, Antipin MY, Peregudov AS, Chkanikov ND (2004) Synthesis and some heterocyclization reactions of new diethyl (1, 1-difluoro-3, 3-dicyano-2-trifluoromethylallyl) phosphonate and ethyl 3, 3-dicyano-2-[(diethoxyphosphoryl) difluoromethyl] acrylate. J Fluor Chem 125:1853–1868CrossRefGoogle Scholar
  125. 125.
    Pryadeina M, Burgart YV, Saloutin V, Slepukhin P, Sadchikova E, Ulomskii E (2009) Synthesis of derivatives of pyrazolo [1,5-a] pyrimidines and imidazo [1,5-a] pyrimidines proceeding from alkyl 2-benzylidene-3-oxo-3-fluoroalkylpropionates. Russ J Org Chem 45:242–247CrossRefGoogle Scholar
  126. 126.
    Elgemeie GEH, Riad BY, Nawwar GA, Elgamal S (1987) Nitriles in heterocyclic synthesis: synthesis of new pyrazolo [1,5-a] pyrimidines, pyrano [2,3-c] pyrazoles and pyrano [3,4-c] pyrazoles. Arch Pharm 320:223–228CrossRefGoogle Scholar
  127. 127.
    Norman RE, Perkins MV, Liepa AJ, Francis CL (2013) N, N-dialkyl-N′-chlorosulfonyl chloroformamidines in heterocyclic synthesis. Part X. Aust J Chem 66:1323–1333CrossRefGoogle Scholar
  128. 128.
    Bekircan O, Küxük M, Kahveci B, Kolaylı S (2005) Convenient synthesis of fused heterocyclic 1, 3, 5-triazines from some n-acyl imidates and heterocyclic amines as anticancer and antioxidant agents. Arch Pharm 338:365–372CrossRefGoogle Scholar
  129. 129.
    Kolos N, Kibkalo B, Zamigaylo L, Omel I, Shishkin O (2015) One-pot synthesis of imidazo [1,2-b] pyrazole derivatives. Russ Chem Bull 64:864–871CrossRefGoogle Scholar
  130. 130.
    Orlov V, Sidorenko DY (2012) Carbo [3 + 3] cyclocondensation reactions. A new method for the synthesis of tetrahydropyrazolo [1,5-b] quinazolines and tetrahydropyrazolo [4,5-b] quinolines. Chem Heterocycl Compd 48:650–657CrossRefGoogle Scholar
  131. 131.
    Abbas IM, Abdallah MA, Gomha SM, Kazem MS (2017) Synthesis and antimicrobial activity of novel azolopyrimidines and pyrido-triazolo-pyrimidinones incorporating pyrazole moiety. J Heterocycl Chem 54:3447–3457CrossRefGoogle Scholar
  132. 132.
    Chimichi S, Cosimelli B, Bruni F, Selleri S (1992) Unambiguous structure determination of some pyrazolo [1,5-a] pyrimidine derivatives by multinuclear NMR spectroscopy. Magn Reson Chem 30:1117–1121CrossRefGoogle Scholar
  133. 133.
    Emelina E, Petrov A, Firsov A (2001) Aminoazoles in heterocycles synthesis: II. Trifluoromethyl-containing diketones in the synthesis of pyrazolo [1,5-a] pyrimidines. Russ J Org Chem 37:852–858CrossRefGoogle Scholar
  134. 134.
    Portilla J, Quiroga J, Nogueras M, Cobo J (2012) Regioselective synthesis of fused pyrazolo [1,5-a] pyrimidines by reaction of 5-amino-1H-pyrazoles and β-dicarbonyl compounds containing five-membered rings. Tetrahedron 68:988–994CrossRefGoogle Scholar
  135. 135.
    Hussein AM (2012) Novel synthesis of some new pyrimido [1,6-a] pyrimidine and pyrazolo [1,5-a] pyrimidine derivatives. J Heterocycl Chem 49:446–451CrossRefGoogle Scholar
  136. 136.
    Elgemeie GH, Metwally NH (2000) Synthesis of structurally related purines: benzimidazo [1,2-a] pyridines, benzimidazo-[1,2-c] pyrimidines, and pyrazolo-[1,5-a] pyrimidines. Monatsh Chem 131:779–785CrossRefGoogle Scholar
  137. 137.
    Mohamed MA (2010) Synthesis of some new pyridones, fused pyrimidines, and fused 1,2,4-triazines. J Heterocycl Chem 47:517–523Google Scholar
  138. 138.
    Abdelhamid AO, El-Idreesy TT, Abdelriheem NA, Dawoud HR (2015) Green one-pot solvent-free synthesis of pyrazolo [1,5-a] pyrimidines, azolo [3,4-d] pyridiazines, and thieno [2,3-b] pyridines containing triazole moiety. J Heterocycl Chem 53:710–718CrossRefGoogle Scholar
  139. 139.
    Abdelhamid AO, Baghos VB, Halim M (2007) Synthesis and reactivity of N-[3-amino-4-(benzoxazol-2-yl) pyrazol-5-yl] phenylamine. J Chem Res 2007:420–425CrossRefGoogle Scholar
  140. 140.
    Ahmed SA, Hussein AM, Hozayen WG, El-Ghandour AH, Abdelhamid AO (2007) Synthesis of some pyrazolopyrimidines as purine analogues. J Heterocycl Chem 44:803–810CrossRefGoogle Scholar
  141. 141.
    Cankař P, Maloň M, Gucký T, Slouka J (2011) Cyclisation reactions of hydrazones XXXII. Synthesis of some pyrazolylhydrazones and study of their cyclisation. Monatsh Chem 142:1149CrossRefGoogle Scholar
  142. 142.
    Ghozlan SA, Abdelrazek FM, Mohamed MH, Azmy KE (2010) Synthesis of some new pyrazole and pyrazolopyrimidine derivatives. J Heterocycl Chem 47:1379–1385CrossRefGoogle Scholar
  143. 143.
    Castillo J-C, Estupiñan D, Nogueras M, Cobo J, Portilla J (2016) 6-(aryldiazenyl) pyrazolo [1,5-a] pyrimidines as strategic intermediates for the synthesis of pyrazolo [5,1-b] purines. J Org Chem 81:12364–12373PubMedCrossRefGoogle Scholar
  144. 144.
    Gnanasekaran KK, Muddala NP, Bunce RA (2015) Pyrazoloquinazolinones and pyrazolopyridopyrimidinones by a sequential N-acylation–SNAr reaction. Tetrahedron Lett 56:1367–1369CrossRefGoogle Scholar
  145. 145.
    Bera H, Kumar Ojha P, Tan BJ, Sun L, Dolzhenko AV, Chui W-K, Chiu GNC (2014) Discovery of mixed type thymidine phosphorylase inhibitors endowed with antiangiogenic properties: synthesis, pharmacological evaluation and molecular docking study of 2-thioxo-pyrazolo [1,5-a][1, 3, 5] triazin-4-ones. Part II. Eur J Med Chem 78:294–303PubMedCrossRefGoogle Scholar
  146. 146.
    Saito T, Obitsu T, Minamoto C, Sugiura T, Matsumura N, Ueno S, Kishi A, Katsumata S, Nakai H, Toda M (2011) Pyrazolo [1,5-a] pyrimidines, triazolo [1,5-a] pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorgan Med Chem 19:5955–5966CrossRefGoogle Scholar
  147. 147.
    Wong FF, Huang Y-Y, Chang C-H (2012) Evaluation of electrophilic heteroaromatic substitution: synthesis of heteroaromatic-fused pyrimidine derivatives via sequential three-component heterocyclization. J Org Chem 77:8492–8500PubMedCrossRefGoogle Scholar
  148. 148.
    Chang C-H, Tsai HJ, Huang Y-Y, Lin H-Y, Wang L-Y, Wu T-S, Wong FF (2013) Selective synthesis of pyrazolo [3,4-d] pyrimidine, N-(1H-pyrazol-5-yl) formamide, or N-(1H-pyrazol-5-yl) formamidine derivatives from N-1-substituted-5-aminopyrazoles with new Vilsmeier-type reagents. Tetrahedron 69:1378–1386CrossRefGoogle Scholar
  149. 149.
    Aggarwal R, Rani C, Kumar R, Garg G, Sharma J (2014) Synthesis of new bi (pyrazolo [1,5-a] pyrimidinyl)-7-one derivatives from dehydroacetic acid and its analogues as antibacterial agents. Arkivoc 2:120–134Google Scholar
  150. 150.
    Singh SB, Tiwari K, Verma PK, Srivastava M, Tiwari KP, Singh J (2013) A new eco-friendly strategy for the synthesis of novel antimicrobial spiro-oxindole derivatives via supramolecular catalysis. Supramol Chem 25:255–262CrossRefGoogle Scholar
  151. 151.
    Rahmati A, Kenarkoohi T, Khavasi HR (2012) Synthesis of 2, 6′-dioxo-1′, 5′, 6′, 7′-tetrahydrospiro [indoline-3,4′-pyrazolo [3,4-b] pyridine]-5′-carbonitriles via a one-pot, three-component reaction in water. ACS Comb Sci 14:657–664PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Eldehna WM, EL-Naggar DH, Hamed AR, Ibrahim HS, Ghabbour HA, Abdel-Aziz HA (2018) One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J Enzyme Inhib Med Chem 33:309–318PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Ahadi S, Ghahremanzadeh R, Mirzaei P, Bazgir A (2009) Synthesis of spiro [benzopyrazolonaphthyridine-indoline]-diones and spiro [chromenopyrazolopyridine-indoline]-diones by one-pot, three-component methods in water. Tetrahedron 65:9316–9321CrossRefGoogle Scholar
  154. 154.
    Ryabukhin SV, Granat DS, Plaskon AS, Shivanyuk A, Lukin O (2014) Synthesis of pyrazolo [3,4-d]-4, 5-dihydropyrimidin-6-ones. Tetrahedron Lett 55:1846–1847CrossRefGoogle Scholar
  155. 155.
    Shirvan SA, Ghahremanzadeh R, Moghaddam MM, Bazgir A, Zarnani AH, Akhondi MM (2012) A novel method for the synthesis of spiro [indoline-pyrazolo [4′, 3′: 5, 6] pyrido [2,3-d] pyrimidine] triones by alum as a reusable catalyst. J Heterocycl Chem 49:951–954CrossRefGoogle Scholar
  156. 156.
    Chen H, Shi D (2010) Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J Comb Chem 12:571–576PubMedCrossRefGoogle Scholar
  157. 157.
    Nikpassand M, Zare Fekri L, Jamshidi N (2015) Microwave-assisted catalyst free three component synthesis of mono and bis spiro pyrazolopyridines in solvent free reaction. J Heterocycl Chem 52:1580–1583CrossRefGoogle Scholar
  158. 158.
    Liang Y-R, Hu Y-J, Zhou X-H, Wu Q, Lin X-F (2017) One-pot construction of spirooxindole backbone via biocatalytic domino reaction. Tetrahedron Lett 58:2923–2926CrossRefGoogle Scholar
  159. 159.
    Ghahremanzadeh R, Rashid Z, Zarnani A-H, Naeimi H (2014) Inorganic–organic hybrid silica based tin complex as a novel, highly efficient and recyclable heterogeneous catalyst for the one-pot preparation of spirooxindoles in water. Dalton Trans 43:15791–15797PubMedCrossRefGoogle Scholar
  160. 160.
    Quiroga J, Portillo S, Pérez A, Gálvez J, Abonia R, Insuasty B (2011) An efficient synthesis of pyrazolo [3,4-b] pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic β-diketones. Tetrahedron Lett 52:2664–2666CrossRefGoogle Scholar
  161. 161.
    Dabiri M, Noroozi Tisseh Z, Nobahar M, Bazgir A (2011) Organic reaction in water: a highly efficient and environmentally friendly synthesis of spiro compounds catalyzed by L-proline. Helv Chim Acta 94:824–830CrossRefGoogle Scholar
  162. 162.
    Dabiri M, Tisseh ZN, Bazgir A (2012) An efficient synthesis of fluorescent spiro [benzopyrazoloquinoline-indoline] triones and spiro [acenaphthylenebenzopyrazoloquinoline] triones. Monatsh Chem 143:139–143CrossRefGoogle Scholar
  163. 163.
    Dabiri M, Tisseh ZN, Bahramnejad M, Bazgir A (2011) Sonochemical multi-component synthesis of spirooxindoles. Ultrason Sonochem 18:1153–1159PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Feng BB, Jin RZ, Zhang MM, Wang XS (2015) Green synthesis of spiro [indoline-3,4′-pyrazolo [3,4-b][1, 6] naphthyridine]-2, 5′(1′H)-diones catalyzed by TsOH in ionic liquids. J Heterocycl Chem 53:1578–1583CrossRefGoogle Scholar
  165. 165.
    Lichitsky B, Komogortsev A, Dudinov A, Krayushkin M (2009) Three-component condensation of 5-aminopyrazole derivatives with isatins and Meldrum’s acid. Synthesis of 1, 7-dihydrospiro [pyrazolo [3,4-b]-pyridine-4, 3′-indole]-2′, 6 (1′H, 5H)-diones. Russ Chem Bull 58:1504–1508CrossRefGoogle Scholar
  166. 166.
    Fan L, Yao C, Wei X (2016) FeCl3-catalyzed multicomponent synthesis of 8-alkoxycarbonylnaphthyl-functionalized pyrazolo [3,4-b] pyridines involving C–C bond cleavage. Monatsh Chem 147:1597–1603CrossRefGoogle Scholar
  167. 167.
    Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Shishkina SV, Shishkin OV, Kobzar KM, Kappe CO (2007) One-pot, multicomponent route to pyrazoloquinolizinones. Org Lett 9:1691–1694PubMedCrossRefGoogle Scholar
  168. 168.
    Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Knyazeva IV, Groth U, Glasnov TN, Kappe CO (2008) Tuning of chemo-and regioselectivities in multicomponent condensations of 5-aminopyrazoles, dimedone, and aldehydes. J Org Chem 73:5110–5118PubMedCrossRefGoogle Scholar
  169. 169.
    Zemlyanaya N, Borodina V, Musatov V, Shishkina S, Sofronov D, Lipson V (2017) Cyclocondensations of 3-alkylpyrazol-5-amines with 3-arylprop-2-enals and cyclic 1, 3-diketones. Russ J Org Chem 53:582–591CrossRefGoogle Scholar
  170. 170.
    Sakhno YI, Shishkina SV, Shishkin OV, Musatov VI, Vashchenko EV, Desenko SM, Chebanov VA (2010) Diversity oriented heterocyclizations of pyruvic acids, aldehydes and 5-amino-N-aryl-1H-pyrazole-4-carboxamides: catalytic and temperature control of chemoselectivity. Mol Divers 14:523–531PubMedCrossRefGoogle Scholar
  171. 171.
    Jiang B, Fan W, Sun M-Y, Ye Q, Wang S-L, Tu S-J, Li G (2014) Domino reaction of arylglyoxals with pyrazol-5-amines: selective access to pyrazolo-fused 1, 7-naphthyridines, 1, 3-diazocanes, and pyrroles. J Org Chem 79:5258–5268PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Fan W, Ye Q, Xu H-W, Jiang B, Wang S-L, Tu S-J (2013) Novel double [3 + 2 + 1] heteroannulation for forming unprecedented dipyrazolo-fused 2, 6-naphthyridines. Org Lett 15:2258–2261PubMedCrossRefGoogle Scholar
  173. 173.
    Wang J-J, Feng X, Xun Z, Shi D-Q, Huang Z-B (2015) Multicomponent strategy to pyrazolo [3,4-e] indolizine derivatives under microwave irradiation. J Org Chem 80:8435–8442PubMedCrossRefGoogle Scholar
  174. 174.
    Petrova O, Lipson V, Zamigailo L, Shirobokova M, Musatov V, Baumer V, Sofronov D (2015) Synthesis and chemical properties of 4-aroyl-3-methyl-4, 10-dihydroindeno [1,2-b] pyrazolo-[4,3-e] pyridin-5-ones. Russ J Org Chem 51:1597–1605CrossRefGoogle Scholar
  175. 175.
    Arlan FM, Khalafy J, Maleki R (2018) One-pot three-component synthesis of a series of 4-aroyl-1, 6-diaryl-3-methyl-1H-pyrazolo [3,4-b] pyridine-5-carbonitriles in the presence of aluminum oxide as a nanocatalyst. Chem Heterocycl Compd 54:51–57CrossRefGoogle Scholar
  176. 176.
    Tu X-J, Hao W-J, Ye Q, Wang S-S, Jiang B, Li G, Tu S-J (2014) Four-component bicyclization approaches to skeletally diverse pyrazolo [3,4-b] pyridine derivatives. J Org Chem 79:11110–11118PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Petrova O, Zamigailo L, Shirobokova M, Shishkina S, Shishkin O, Musatov V, Lipson V (2013) Cyclocondensation of 3(5)-aminopyrazoles with arylglyoxals and cyclohexane-1, 3-diones. Chem Heterocycl Compd 49:955–967CrossRefGoogle Scholar
  178. 178.
    Hill MD (2016) A multicomponent approach to highly substituted 1H-pyrazolo [3,4-b] pyridines. Synthesis 48:2201–2204CrossRefGoogle Scholar
  179. 179.
    Huang Z, Hu Y, Zhou Y, Shi D (2010) Efficient one-pot three-component synthesis of fused pyridine derivatives in ionic liquid. ACS Comb Sci 13:45–49PubMedCrossRefGoogle Scholar
  180. 180.
    Safaei S, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Tangestaninejad S, Mirkhani V, Khavasi HR (2013) One-pot three-component synthesis of pyrano [3, 2-b] pyrazolo [4, 3-e] pyridin-8 (1H)-ones. ACS Comb Sci 15:141–146PubMedCrossRefGoogle Scholar
  181. 181.
    Shaabani A, Seyyedhamzeh M, Maleki A, Behnam M, Rezazadeh F (2009) Synthesis of fully substituted pyrazolo [3,4-b] pyridine-5-carboxamide derivatives via a one-pot four-component reaction. Tetrahedron Lett 50:2911–2913CrossRefGoogle Scholar
  182. 182.
    Nikpassand M, Zare L, Shafaati T, Shariati S (2012) Regioselective synthesis of fused azo-linked pyrazolo [4, 3-e] pyridines using nano-Fe3O4. Chin J Chem 30:604–608CrossRefGoogle Scholar
  183. 183.
    Svetlik J, Veizerová L, Mayer TU, Catarinella M (2010) Monastrol analogs: a synthesis of pyrazolopyridine, benzopyranopyrazolopyridine, and oxygen-bridged azolopyrimidine derivatives and their biological screening. Bioorgan Med Chem Lett 20:4073–4076CrossRefGoogle Scholar
  184. 184.
    Magedov IV, Frolova L, Manpadi M, Bhoga UD, Tang H, Evdokimov NM, George O, Hadje Georgiou K, Renner S, Getlik MU (2011) Anticancer properties of an important drug lead podophyllotoxin can be efficiently mimicked by diverse heterocyclic scaffolds accessible via one-step synthesis. J Med Chem 54:4234–4246PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Shi DQ, Yang F, Ni SN (2009) A facile synthesis of furo [3,4-e] pyrazolo [3,4-b] pyridine-5 (7H)-one derivatives via three-component reaction in ionic liquid without any catalyst. J Heterocycl Chem 46:469–476CrossRefGoogle Scholar
  186. 186.
    Hatti I, Sreenivasulu R, Jadav SS, Jayaprakash V, Kumar CG, Raju RR (2015) Synthesis, cytotoxic activity and docking studies of new 4-aza-podophyllotoxin derivatives. Med Chem Res 24:3305–3313CrossRefGoogle Scholar
  187. 187.
    Quiroga J, Mejı́a D, Insuasty B, Abonı́a R, Nogueras M, Sánchez A, Cobo J, Low JN (2001) Regioselective synthesis of 4, 7, 8, 9-tetrahydro-2H-pyrazolo [3,4-b] quinolin-5 (6H)-ones. Mech Struct Anal Tetrahedron 57:6947–6953Google Scholar
  188. 188.
    Lipson V, Svetlichnaya N, Borodina V, Shirobokova M, Shishkina S, Shishkin O, Musatov V (2010) Cascade cyclization of 3(5)-aminopyrazoles with aromatic aldehydes and cyclohexanediones. Russ J Org Chem 46:1388–1398CrossRefGoogle Scholar
  189. 189.
    Muravyova EA, Desenko SM, Rudenko RV, Shishkina SV, Shishkin OV, Sen’ko YV, Vashchenko EV, Chebanov VA (2011) Switchable selectivity in multicomponent heterocyclizations of acetoacetamides, aldehydes, and 3-amino-1,2,4-triazoles/5-aminopyrazoles. Tetrahedron 67:9389–9400CrossRefGoogle Scholar
  190. 190.
    Andriushchenko AY, Desenko SM, Chernenko VN, Chebanov VA (2011) Green and efficient synthesis of pyrazolo [3,4-b] quinolin-5-ones derivatives by microwave-assisted multicomponent reaction in hot water medium. J Heterocycl Chem 48:365–367CrossRefGoogle Scholar
  191. 191.
    Khurana JM, Chaudhary A, Nand B, Lumb A (2012) Aqua mediated indium (III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett 53:3018–3022CrossRefGoogle Scholar
  192. 192.
    Chebanov V, Desenko S (2012) Multicomponent heterocyclization reactions with controlled selectivity (review). Chem Heterocycl Compd 48:566–583CrossRefGoogle Scholar
  193. 193.
    Bazgir A, Khanaposhtani MM, Soorki AA (2008) One-pot synthesis and antibacterial activities of pyrazolo [4′, 3′: 5, 6] pyrido [2,3-d] pyrimidine-dione derivatives. Bioorgan Med Chem Lett 18:5800–5803CrossRefGoogle Scholar
  194. 194.
    Chebanov VA, Sakhno YI, Desenko SM (2012) High regioselective ultrasonic-assisted synthesis of 2, 7-diaryl-4, 7-dihydropyrazolo [1,5-a] pyrimidine-5-carboxylic acids. Ultrason Sonochem 19:707–709PubMedCrossRefGoogle Scholar
  195. 195.
    Mosslemin MH, Nateghi MR (2010) Rapid and efficient synthesis of fused heterocyclic pyrimidines under ultrasonic irradiation. Ultrason Sonochem 17:162–167PubMedCrossRefGoogle Scholar
  196. 196.
    Bremner WS, Organ MG (2007) Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. J Comb Chem 9:14–16PubMedCrossRefGoogle Scholar
  197. 197.
    Bazgir A, Khanaposhtani MM, Ghahremanzadeh R, Soorki AA (2009) A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles. C R Chim 12:1287–1295CrossRefGoogle Scholar
  198. 198.
    Wang S-L, Liu Y-P, Xu B-H, Wang X-H, Jiang B, Tu S-J (2011) Microwave-assisted chemoselective reaction: a divergent synthesis of pyrazolopyridine derivatives with different substituted patterns. Tetrahedron 67:9417–9425CrossRefGoogle Scholar
  199. 199.
    Wan Y, Huang SY, Liu GX, Chen LF, Yue SN, Zhang WL, Zou H, Zhang LZ, Cui H, Zhou SL (2016) A catalyst-free synthesis of pyrazolopyridines derived from alicyclic mono-ketones. J Heterocycl Chem 53:1715–1720CrossRefGoogle Scholar
  200. 200.
    Jiang B, Liang Y-B, Kong L-F, Tu X-J, Hao W-J, Ye Q, Tu S-J (2014) Highly diastereoselective synthesis of quinoline-2, 5-diones and pyrazolo [3,4-b] pyridin-6 (7H)-ones under microwave irradiation. RSC Adv 4:54480–54486CrossRefGoogle Scholar
  201. 201.
    Shi CL, Chen H, Shi DQ (2011) An efficient one-pot synthesis of pyrazolo [3,4-b] pyridinone derivatives catalyzed by L-proline. J Heterocycl Chem 48:351–354CrossRefGoogle Scholar
  202. 202.
    Komogortsev AN, Lichitsky BV, Dudinov AA, Krylov KS, Bogacheva AM, Kobeleva OI, Barachevskii VA, Krayushkin MM (2013) Three-component condensation of iminoazolidines with aldehydes and 5-aminopyrazole. Mendeleev Commun 23:222–223CrossRefGoogle Scholar
  203. 203.
    Nam N, Grandberg I, Sorokin V (2002) Pyrazolopyrimidines based on 5-aminopyrazoles unsubstituted at the position 1. Chem Heterocycl Compd 38:1371–1374CrossRefGoogle Scholar
  204. 204.
    Zeng L-Y, Liu T, Yang J, Yang Y, Cai C, Liu S (2017) “On-water” facile synthesis of novel pyrazolo [3,4-b] pyridinones possessing anti-influenza virus activity. ACS Comb Sci 19:437–446PubMedCrossRefGoogle Scholar
  205. 205.
    Hemmati S, Safarimehr P, Safaei M, Hekmati M (2017) One-pot green synthesis of 3-methyl-4-aryl-2, 4, 5, 7-tetrahydropyrazolo [3,4-b] pyridine-6-ones by multicomponent assembling of 5-methylpyrazol-3-amine, aldehydes, and Meldrum’s acid using sodium dodecyl sulfate (SDS) in water. J Heterocycl Chem 54:1640–1644CrossRefGoogle Scholar
  206. 206.
    Quiroga J, Diaz Y, Bueno J, Insuasty B, Abonia R, Ortiz A, Nogueras M, Cobo J (2014) Microwave induced three-component synthesis and antimycobacterial activity of benzopyrazolo [3,4-b] quinolindiones. Eur J Med Chem 74:216–224PubMedCrossRefGoogle Scholar
  207. 207.
    Quiroga J, Portilla J, Serrano H, Abonía R, Insuasty B, Nogueras M, Cobo J (2007) Regioselective synthesis of fused benzopyrazolo [3,4-b] quinolines under solvent-free conditions. Tetrahedron Lett 48:1987–1990CrossRefGoogle Scholar
  208. 208.
    Manickam S, Balijapalli U, Sathiyanarayanan KI (2018) SnCl 2-catalyzed synthesis of dihydro-5 H-benzo [f] pyrazolo [3,4-b] quinoline and dihydroindeno [2,1-b] pyrazolo [4,3-e] pyridine with high fluorescence and their photophysical properties. N J Chem 42:860–871CrossRefGoogle Scholar
  209. 209.
    Shi DQ, Yang F (2008) Ionic liquid as an efficient promoting medium for synthesis of bis-pyrazolo [3,4-b: 4′, 3′-e] pyridines. J Chin Chem Soc 55:755–760CrossRefGoogle Scholar
  210. 210.
    Quiroga J, Trilleras J, Pantoja D, Abonía R, Insuasty B, Nogueras M, Cobo J (2010) Microwave-assisted synthesis of pyrazolo [3,4-b] pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic β-diketones. Tetrahedron Lett 51:4717–4719CrossRefGoogle Scholar
  211. 211.
    Bagley MC, Baashen M, Paddock VL, Kipling D, Davis T (2013) Regiocontrolled synthesis of 3-and 5-aminopyrazoles, pyrazolo [3,4-d] pyrimidines, pyrazolo [3,4-b] pyridines and pyrazolo [3,4-b] quinolinones as MAPK inhibitors. Tetrahedron 69:8429–8438CrossRefGoogle Scholar
  212. 212.
    An H, Eum S-J, Koh M, Lee SK, Park SB (2008) Diversity-oriented synthesis of privileged benzopyranyl heterocycles from s-cis-enones. J Org Chem 73:1752–1761PubMedCrossRefGoogle Scholar
  213. 213.
    Petrova ON, Zamigajlo LL, Shishkina SV, Shishkin OV, Musatov VI, Borisov AV, Lipson VV (2013) A facile one-pot highly chemo-and regioselective synthesis of the novel heterocyclic system indolo [1,2-c] azolo [1,5-a] quinazoline-8, 10-dione. Tetrahedron 69:11185–11190CrossRefGoogle Scholar
  214. 214.
    Sadek KU, Mekheimer RA, Mohamed TM, Moustafa MS, Elnagdi MH (2012) Regioselectivity in the multicomponent reaction of 5-aminopyrazoles, cyclic 1, 3-diketones and dimethylformamide dimethylacetal under controlled microwave heating. Beilstein J Org Chem 8:18–24PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Ghotekar BK, Jachak MN, Toche RB (2009) New one-step synthesis of pyrazolo [1,5-a] pyrimidine and pyrazolo [1,5-a] quinazoline derivatives via multicomponent reactions. J Heterocycl Chem 46:708–713CrossRefGoogle Scholar
  216. 216.
    Yoshida M, Mori A, Inaba A, Oka M, Makino H, Yamaguchi M, Fujita H, Kawamoto T, Goto M, Kimura H (2010) Synthesis and structure–activity relationship of tetrahydropyrazolopyrimidine derivatives—a novel structural class of potent calcium-sensing receptor antagonists. Bioorgan Med Chem 18:8501–8511CrossRefGoogle Scholar
  217. 217.
    Danagulyan G, Panosyan G, Boyakhchyan A (2002) Synthesis of n-alkylated derivatives of pyrazolo [1,5-a] pyrimidine and their reaction with methylamine. Chem Heterocycl Compd 38:581–585CrossRefGoogle Scholar
  218. 218.
    Fraley ME, Hoffman WF, Rubino RS, Hungate RW, Tebben AJ, Rutledge RZ, McFall RC, Huckle WR, Kendall RL, Coll KE (2002) Synthesis and initial sar studies of 3, 6-disubstituted pyrazolo [1,5-a] pyrimidines: a new class of KDR kinase inhibitors. Bioorgan Med Chem Lett 12:2767–2770CrossRefGoogle Scholar
  219. 219.
    Ren L, Laird ER, Buckmelter AJ, Dinkel V, Gloor SL, Grina J, Newhouse B, Rasor K, Hastings G, Gradl SN (2012) Potent and selective pyrazolo [1,5-a] pyrimidine based inhibitors of B-RafV600E kinase with favorable physicochemical and pharmacokinetic properties. Bioorgan Med Chem Lett 22:1165–1168CrossRefGoogle Scholar
  220. 220.
    Finlay HJ, Jiang J, Caringal Y, Kover A, Conder ML, Xing D, Levesque P, Harper T, Hsueh MM, Atwal K (2013) Triazolo and imidazo dihydropyrazolopyrimidine potassium channel antagonists. Bioorgan Med Chem Lett 23:1743–1747CrossRefGoogle Scholar
  221. 221.
    Finlay HJ, Lloyd J, Vaccaro W, Kover A, Yan L, Bhave G, Prol J, Huynh T, Bhandaru R, Caringal Y (2012) Discovery of ((S)-5-(methoxymethyl)-7-(1-methyl-1H-indol-2-yl)-2-(trifluoromethyl)-4, 7-dihydropyrazolo [1,5-a] pyrimidin-6-yl)((S)-2-(3-methylisoxazol-5-yl) pyrrolidin-1-yl) methanone as a potent and selective Ikur inhibitor. J Med Chem 55:3036–3048PubMedCrossRefGoogle Scholar
  222. 222.
    Hwang JY, Windisch MP, Jo S, Kim K, Kong S, Kim HC, Kim S, Kim H, Lee ME, Kim Y (2012) Discovery and characterization of a novel 7-aminopyrazolo [1,5-a] pyrimidine analog as a potent hepatitis c virus inhibitor. Bioorgan Med Chem Lett 22:7297–7301CrossRefGoogle Scholar
  223. 223.
    Lloyd J, Finlay HJ, Atwal K, Kover A, Prol J, Yan L, Bhandaru R, Vaccaro W, Huynh T, Huang CS (2009) Dihydropyrazolopyrimidines containing benzimidazoles as KV1.5 potassium channel antagonists. Bioorgan Med Chem Lett 19:5469–5473CrossRefGoogle Scholar
  224. 224.
    Coumar MS, Wu J-S, Leou J-S, Tan U-K, Chang C-Y, Chang T-Y, Lin W-H, Hsu JT-A, Chao Y-S, Wu S-Y (2008) Aurora kinase A inhibitors: identification, SAR exploration and molecular modeling of 6, 7-dihydro-4H-pyrazolo-[1,5-a] pyrrolo [3,4-d] pyrimidine-5, 8-dione scaffold. Bioorgan Med Chem Lett 18:1623–1627CrossRefGoogle Scholar
  225. 225.
    Larsen SD, Spilman CH, Bell FP, Dinh DM, Martinborough E, Wilson GJ (1991) Synthesis and hypocholesterolemic activity of 6, 7-dihydro-4H-pyrazolo [1,5-a] pyrrolo [3,4-d] pyrimidine-5, 8-diones, novel inhibitors of acylcoa: cholesterol o-acyltransferase. J Med Chem 34:1721–1727PubMedCrossRefGoogle Scholar
  226. 226.
    Senga K, Novinson T, Wilson HR, Robins RK (1981) Synthesis and antischistosomal activity of certain pyrazolo [1,5-a] pyrimidines. J Med Chem 24:610–613PubMedCrossRefGoogle Scholar
  227. 227.
    Bruni F, Costanzo A, Selleri S, Guerrini G, Fantozzi R, Pirisino R, Brunelleschi S (1993) Synthesis and study of the anti-inflammatory properties of some pyrazolo [1,5-a] pyrimidine derivatives. J Pharm Sci 82:480–486PubMedCrossRefGoogle Scholar
  228. 228.
    Ghelani SM, Naliapara YT (2016) Design, multicomponent synthesis and characterization of diversely substituted pyrazolo [1,5-a] pyrimidine derivatives. J Heterocycl Chem 53:1843–1851CrossRefGoogle Scholar
  229. 229.
    Paruch K, Dwyer MP, Alvarez C, Brown C, Chan T-Y, Doll RJ, Keertikar K, Knutson C, McKittrick B, Rivera J (2010) Discovery of dinaciclib (SCH 727965): a potent and selective inhibitor of cyclin-dependent kinases. ACS Med. Chem. Lett. 1:204–208PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Tian Y, Du D, Rai D, Wang L, Liu H, Zhan P, De Clercq E, Pannecouque C, Liu X (2014) Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: design, synthesis and biological evaluation of novel 5, 7-disubstituted pyrazolo [1,5-a] pyrimidine derivatives. Bioorgan Med Chem 22:2052–2059CrossRefGoogle Scholar
  231. 231.
    Gavrin LK, Lee A, Provencher BA, Massefski WW, Huhn SD, Ciszewski GM, Cole DC, McKew JC (2007) Synthesis of pyrazolo [1,5-α] pyrimidinone regioisomers. J Org Chem 72:1043–1046PubMedCrossRefGoogle Scholar
  232. 232.
    Aghazadeh Tabrizi M, Baraldi PG, Saponaro G, Moorman AR, Romagnoli R, Preti D, Baraldi S, Ruggiero E, Tintori C, Tuccinardi T (2013) Discovery of 7-oxopyrazolo [1,5-a] pyrimidine-6-carboxamides as potent and selective CB2 cannabinoid receptor inverse agonists. J Med Chem 56:4482–4496PubMedCrossRefGoogle Scholar
  233. 233.
    Danagulyan G, Boyakhchyan A, Danagulyan A, Panosyan H (2011) C–C recyclizations of some 2, 7-disubstituted 6-ethoxycarbonylpyrazolo [1,5-a] pyrimidines. Chem Heterocycl Compd 47:321–331CrossRefGoogle Scholar
  234. 234.
    Danagulyan G (2005) Kost-Sagitullin rearrangement and other isomerization recyclizations of pyrimidines. Chem Heterocycl Compd 41:1205–1236CrossRefGoogle Scholar
  235. 235.
    Abdelrazek FM, Sobhy NA, Metz P, Bazbouz AA (2012) Synthetic studies with 3-Oxo-N-[4-(3-oxo-3-phenylpropionylamino)-phenyl]-3-phenylpropionamide. J Heterocycl Chem 49:381–387CrossRefGoogle Scholar
  236. 236.
    Shaaban MR (2008) Microwave-assisted synthesis of fused heterocycles incorporating trifluoromethyl moiety. J Fluor Chem 129:1156–1161CrossRefGoogle Scholar
  237. 237.
    Springer RH, Scholten M, O’Brien DE, Novinson T, Miller JP, Robins RK (1982) Synthesis and enzymic activity of 6-carbethoxy-and 6-ethoxy-3, 7-disubstituted pyrazolo [1,5-a] pyrimidines and related derivatives as adenosine cyclic 3′, 5′-phosphate phosphodiesterase inhibitors. J Med Chem 25:235–242PubMedCrossRefGoogle Scholar
  238. 238.
    Elgemeie GE, Ali HA, Mansour A-K (1994) Antimetabolites: a convenient synthesis of mercaptopurine and thioguanine analogues. Phosphorus Sulfur Silicon Relat Elem 90:143–146CrossRefGoogle Scholar
  239. 239.
    Ryabukhin SV, Granat DS, Plaskon AS, Shivanyuk AN, Tolmachev AA, Volovenko YM (2012) High throughput synthesis of extended pyrazolo [3,4-d] dihydropyrimidines. ACS Comb Sci 14:465–470PubMedCrossRefGoogle Scholar
  240. 240.
    Elgemeie GH, El-Ezbawy SR, El-Aziz HA (2001) The design and synthesis of structurally related mercaptopurine analogues: reaction of dimethyl N-cyano-dithioiminocarbonate with 5-aminopyrazoles. Synth Commun 31:3453–3458CrossRefGoogle Scholar
  241. 241.
    Senga K, O’Brien DE, Scholten MB, Novinson T, Miller JP, Robins RK (1982) Synthesis and enzymic activity of various substituted pyrazolo [1,5-a]-1, 3, 5-triazines as adenosine cyclic 3′, 5′-phosphate phosphodiesterase inhibitors. J Med Chem 25:243–249PubMedCrossRefGoogle Scholar
  242. 242.
    Kiselyov AS, Smith L (2006) Novel one pot synthesis of polysubstituted pyrazolo [1,5-a]-and imidazo [1,2-a] pyrimidines. Tetrahedron Lett 47:2611–2614CrossRefGoogle Scholar
  243. 243.
    Murlykina MV, Sakhno YI, Desenko SM, Konovalova IS, Shishkin OV, Sysoiev DA, Kornet MN, Chebanov VA (2013) Features of switchable multicomponent heterocyclizations of salicylic aldehydes and 5-aminopyrazoles with pyruvic acids and antimicrobial activity of the reaction products. Tetrahedron 69:9261–9269CrossRefGoogle Scholar
  244. 244.
    Lim FPL, Dolzhenko AV (2014) 4-amino-substituted pyrazolo [1,5-a][1, 3, 5] triazin-2-amines: a new practical synthesis and biological activity. Tetrahedron Lett 55:6684–6688CrossRefGoogle Scholar
  245. 245.
    Lim FPL, Luna G, Dolzhenko AV (2014) A new, one-pot, multicomponent synthesis of 5-aza-9-deaza-adenines under microwave irradiation. Tetrahedron Lett 55:5159–5163CrossRefGoogle Scholar
  246. 246.
    Lim FPL, Luna G, Dolzhenko AV (2015) A one-pot, three-component aminotriazine annulation onto 5-aminopyrazole-4-carbonitriles under microwave irradiation. Tetrahedron Lett 56:521–524CrossRefGoogle Scholar
  247. 247.
    Marinozzi M, Carotti A, Sardella R, Buonerba F, Ianni F, Natalini B, Passeri D, Rizzo G, Pellicciari R (2013) Asymmetric synthesis of the four diastereoisomers of a novel non-steroidal farnesoid X receptor (FXR) agonist: role of the chirality on the biological activity. Bioorgan Med Chem 21:3780–3789CrossRefGoogle Scholar
  248. 248.
    Chen H, Shi D (2011) Efficient one-pot synthesis of spiro [indoline-3,4′-pyrazolo [3,4-e][1, 4] thiazepine] dione via three-component reaction. Tetrahedron 67:5686–5692CrossRefGoogle Scholar
  249. 249.
    Jadhav AM, Balwe SG, Lim KT, Jeong YT (2017) A novel three-component method for the synthesis of spiro [chromeno [4′, 3′: 4, 5] pyrimido [1,2-b] indazole-7, 3′-indoline]-2′, 6 (9H)-dione. Tetrahedron 73:2806–2813CrossRefGoogle Scholar
  250. 250.
    Insuasty H, Insuasty B, Castro E, Quiroga J, Abonia R (2013) An efficient two-step synthesis of novel 2-amino-substituted pyrazolo [1,5-a][1, 3, 5] triazines. Tetrahedron Lett 54:1722–1725CrossRefGoogle Scholar
  251. 251.
    Abonia R, Rengifo E, Quiroga J, Insuasty B, Cobo J, Nogueras M (2004) Synthesis of novel hydropyrazolopyridine derivatives in solvent-free conditions via benzotriazole methodology. Tetrahedron 60:8839–8843CrossRefGoogle Scholar
  252. 252.
    Gálvez J, Quiroga J, Insuasty B, Abonia R (2014) Microwave-assisted and iodine mediated synthesis of 5-N-alkyl-cycloalkane [d]-pyrazolo [3,4-b] pyridines from 5-aminopyrazoles and cyclic ketones. Tetrahedron Lett 55:1998–2002CrossRefGoogle Scholar
  253. 253.
    Abonia R, Rengifo E, Quiroga J, Insuasty B, Sánchez A, Cobo J, Low J, Nogueras M (2002) An unexpected chemical behavior of 5-N-(benzotriazol-1-ylmethyl) amino-3-tert-butyl-1-phenylpyrazole. Tetrahedron Lett 43:5617–5620CrossRefGoogle Scholar
  254. 254.
    Rahmati A, Kouzehrash MA (2011) Synthesis of N-alkyl-2-aryl-5H-imidazo [1,2-b] pyrazol-3-amines by a three-component condensation reaction. Synthesis 2011:2913–2920CrossRefGoogle Scholar
  255. 255.
    Demjén A, Gyuris M, Wölfling J, Puskás LG, Kanizsai I (2014) Facile synthesis of 1H-imidazo [1,2-b] pyrazoles via a sequential one-pot synthetic approach. Beilstein J Org Chem 10:2338PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Rahmati A, Eskandari-Vashareh M, Alizadeh-Kouzehrash M (2013) Synthesis of 3-(benzylideneamino)-2-phenyl-5H-imidazo [1,2-b] pyrazole-7-carbonitriles via a four-component condensation reaction. Tetrahedron 69:4199–4204CrossRefGoogle Scholar
  257. 257.
    Rahmani F, Mohammadpoor-Baltork I, Khosropour AR, Moghadam M, Tangestaninejad S, Mirkhani V (2017) Novel multicomponent synthesis of pyridine–pyrimidines and their bis-derivatives catalyzed by triazine diphosphonium hydrogen sulfate ionic liquid supported on functionalized nanosilica. ACS Comb Sci 20:19–25PubMedCrossRefGoogle Scholar
  258. 258.
    Rao HSP, Adigopula LN, Ramadas K (2017) One-pot synthesis of densely substituted pyrazolo [3,4-b]-4, 7-dihydropyridines. ACS Comb Sci 19:279–285PubMedCrossRefGoogle Scholar
  259. 259.
    Simpkins NS, Foster R, Lenz E, Stead D (2017) Organocatalytic stereoconvergent synthesis of α-CF3 amides; triketopiperazines and their heterocyclic metamorphosis. Chem A Eur J 23:8810–8813CrossRefGoogle Scholar
  260. 260.
    Khan MF, Alam MM, Verma G, Akhtar W, Akhter M, Shaquiquzzaman M (2016) The therapeutic voyage of pyrazole and its analogs: a review. Eur J Med Chem 120:170–201PubMedCrossRefGoogle Scholar
  261. 261.
    Nargund L, Hariprasad V, Reddy G (1992) Synthesis and anti-inflammatory activity of fluorinated phenyl styryl ketones and N-phenyl-5-substituted aryl-3-p-(fluorophenyl) pyrazolins and pyrazoles. J Pharm Sci 81:892–894PubMedCrossRefGoogle Scholar
  262. 262.
    Bekhit AA, Ashour H, Guemei AA (2005) Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch Pharm 338:167–174CrossRefGoogle Scholar
  263. 263.
    Abdel-Aziz M, Abuo-Rahma GE-DA, Hassan AA (2009) Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur J Med Chem 44:3480–3487PubMedCrossRefGoogle Scholar
  264. 264.
    Ramírez-Prada J, Robledo SM, Vélez ID, del Pilar Crespo M, Quiroga J, Abonia R, Montoya A, Svetaz L, Zacchino S, Insuasty B (2017) Synthesis of novel quinoline–based 4, 5–dihydro–1H–pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem 131:237–254PubMedCrossRefGoogle Scholar
  265. 265.
    Bondock S, Fadaly W, Metwally MA (2010) Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur J Med Chem 45:3692–3701PubMedCrossRefGoogle Scholar
  266. 266.
    Park H-J, Lee K, Park S-J, Ahn B, Lee J-C, Cho H, Lee K-I (2005) Identification of antitumor activity of pyrazole oxime ethers. Bioorgan Med Chem Lett 15:3307–3312CrossRefGoogle Scholar
  267. 267.
    Abdelall EK, Lamie PF, Ali WA (2016) Cyclooxygenase-2 and 15-lipoxygenase inhibition, synthesis, anti-inflammatory activity and ulcer liability of new celecoxib analogues: determination of region-specific pyrazole ring formation by noesy. Bioorgan Med Chem Lett 26:2893–2899CrossRefGoogle Scholar
  268. 268.
    Gouda MA, Hamama WS (2017) Overview of the synthetic routes to sildenafil and its analogues. Synth Commun 47:1–32CrossRefGoogle Scholar
  269. 269.
    Huang D, Huang M, Liu A, Liu X, Liu W, Chen X, Xue H, Sun J, Yin D, Wang X (2017) Design, synthesis, and acaricidal activities of novel pyrazole acrylonitrile compounds. J Heterocycl Chem 54:1121–1128CrossRefGoogle Scholar
  270. 270.
    Lindsley CW, Wisnoski DD, Leister WH, O’Brien JA, Lemaire W, Williams DL, Burno M, Sur C, Kinney GG, Pettibone DJ (2004) Discovery of positive allosteric modulators for the metabotropic glutamate receptor subtype 5 from a series of N-(1, 3-diphenyl-1H-pyrazol-5-yl) benzamides that potentiate receptor function in vivo. J Med Chem 47:5825–5828PubMedCrossRefGoogle Scholar
  271. 271.
    Wenglowsky S, Ren L, Ahrendt KA, Laird ER, Aliagas I, Alicke B, Buckmelter AJ, Choo EF, Dinkel V, Feng B (2011) Pyrazolopyridine inhibitors of B-RafV600E. Part 1: the development of selective, orally bioavailable, and efficacious inhibitors. ACS Med Chem Lett 2:342–347PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Moree WJ, Goldman P, Demaggio AJ, Christenson E, Herendeen D, Eksterowicz J, Kesicki EA, McElligott DL, Beaton G (2008) Identification of ring-fused pyrazolo pyridin-2-ones as novel poly (ADP-ribose) polymerase-1 inhibitors. Bioorgan Med Chem Lett 18:5126–5129CrossRefGoogle Scholar
  273. 273.
    Beinat C, Reekie T, Banister SD, O’Brien-Brown J, Xie T, Olson TT, Xiao Y, Harvey A, O’Connor S, Coles C (2015) Structure–activity relationship studies of SEN12333 analogues: determination of the optimal requirements for binding affinities at α7 nAChRs through incorporation of known structural motifs. Eur J Med Chem 95:277–301PubMedCrossRefPubMedCentralGoogle Scholar
  274. 274.
    Cheng K-M, Huang Y-Y, Huang J-J, Kaneko K, Kimura M, Takayama H, Juang S-H, Wong FF (2010) Synthesis and antiproliferative evaluation of N, N-disubstituted-N′-[1-aryl-1H-pyrazol-5-yl]-methnimidamides. Bioorgan Med Chem Lett 20:6781–6784CrossRefGoogle Scholar
  275. 275.
    Gudmundsson KS, Johns BA, Weatherhead J (2009) Pyrazolopyrimidines and pyrazolotriazines with potent activity against herpesviruses. Bioorgan Med Chem Lett 19:5689–5692CrossRefGoogle Scholar
  276. 276.
    Bagley MC, Dwyer JE, Baashen M, Dix MC, Murziani PG, Rokicki MJ, Kipling D, Davis T (2016) The effect of RO3201195 and a pyrazolyl ketone P38 MAPK inhibitor library on the proliferation of Werner syndrome cells. Org Biomol Chem 14:947–956PubMedCrossRefGoogle Scholar
  277. 277.
    Nasiri AH, Saxena K, Bats JW, Nasiri HR, Schwalbe H (2016) Biophysical investigation and conformational analysis of p38α kinase inhibitor doramapimod and its analogues. MedChemComm 7:1421–1428CrossRefGoogle Scholar
  278. 278.
    Moe ST, Thompson AB, Smith GM, Fredenburg RA, Stein RL, Jacobson AR (2009) Botulinum neurotoxin serotype a inhibitors: small-molecule mercaptoacetamide analogs. Bioorgan Med Chem 17:3072–3079CrossRefGoogle Scholar
  279. 279.
    Takahashi T, Sakuraba A, Hirohashi T, Shibata T, Hirose M, Haga Y, Nonoshita K, Kanno T, Ito J, Iwaasa H (2006) Novel potent neuropeptide Y Y5 receptor antagonists: synthesis and structure–activity relationships of phenylpiperazine derivatives. Bioorgan Med Chem 14:7501–7511CrossRefGoogle Scholar
  280. 280.
    Wen W, Wu W, Romaine IM, Kaufmann K, Du Y, Sulikowski GA, Weaver CD, Lindsley CW (2013) Discovery of ‘molecular switches’ within a GIRK activator scaffold that afford selective GIRK inhibitors. Bioorgan Med Chem Lett 23:4562–4566CrossRefGoogle Scholar
  281. 281.
    Lee S, Jo A, Park SB (2013) Discovery of a highly selective FLT3 kinase inhibitor from phenotypic cell viability profiling. MedChemComm 4:228–232CrossRefGoogle Scholar
  282. 282.
    Cuny GD, Paul BY, Laha JK, Xing X, Liu J-F, Lai CS, Deng DY, Sachidanandan C, Bloch KD, Peterson RT (2008) Structure–activity relationship study of bone morphogenetic protein (BMP) signaling inhibitors. Bioorgan Med Chem Lett 18:4388–4392CrossRefGoogle Scholar
  283. 283.
    Kumar AA, Bodke YD, Lakra PS, Sambasivam G, Bhat KG (2017) Design, synthesis and anti-cancer evaluation of a novel series of pyrazolo [1,5-a] pyrimidine substituted diamide derivatives. Med Chem Res 26:714–744CrossRefGoogle Scholar
  284. 284.
    Zhou B, Hu J, Xu F, Chen Z, Bai L, Fernandez-Salas E, Lin M, Liu L, Yang C-Y, Zhao Y (2017) Discovery of a small-molecule degrader of bromodomain and extra-terminal (BET) proteins with picomolar cellular potencies and capable of achieving tumor regression. J Med Chem 61:462–481PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Wang T, Bemis G, Hanzelka B, Zuccola H, Wynn M, Moody CS, Green J, Locher C, Liu A, Gao H (2017) Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med Chem Lett 8:1224–1229PubMedCrossRefGoogle Scholar
  286. 286.
    Chino A, Seo R, Amano Y, Namatame I, Hamaguchi W, Honbou K, Mihara T, Yamazaki M, Tomishima M, Masuda N (2018) Fragment-based discovery of pyrimido [1,2-b] indazole PDE10A inhibitors. Chem Pharm Bull 66:286–294PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ahmad Shaabani
    • 1
    Email author
  • Mohammad Taghi Nazeri
    • 1
  • Ronak Afshari
    • 1
  1. 1.Faculty of ChemistryShahid Beheshti University, G. C.TehranIran

Personalised recommendations