Advertisement

Second generation of primaquine ureas and bis-ureas as potential antimycobacterial agents

  • Kristina Pavić
  • Zrinka Rajić
  • Hana Michnová
  • Josef Jampílek
  • Ivana Perković
  • Branka Zorc
Original Article
  • 8 Downloads

Abstract

Here, we describe design and synthesis of twelve novel compounds bearing primaquine motif and hydroxy- or halogenamine linked by an urea or bis-urea spacer. Preparation of ureas 3af started with the conversion of primaquine to benzotriazolide 2 and aminolysis of the later compound by 4-(2-aminoethyl)phenol or amino alcohols bearing fluorine atom, cycloalkyl or trifluoromethyl group under microwave irradiation. The four-step sequence leading to bis-ureas 6af included preparation of benzotriazolide 2 and two intermediates, semicarbazide 4 and benzotriazole bis-urea 5, which upon aminolysis with the same aminophenol or amino alcohols gave the title compounds. Antimycobacterial screening detected three active compounds against Mycobacterium marinum and M. tuberculosis, namely 3b, 3f and 6f, derived from cyclobutyl amino alcohol or amino phenol.

Graphical abstract

Keywords

Primaquine Urea Amino alcohol Fluorine Antimycobacterial screening 

Notes

Acknowledgements

The study was supported by the Croatian Science Foundation through the research project IP-09-2014-1501, Comenius University in Bratislava (Grant UK/229/2018), Faculty of Pharmacy of Comenius University in Bratislava (Grant FaFUK/9/2018) and SANOFI-AVENTIS Pharma Slovakia, s.r.o. We thank Marijeta Kralj and Lidija Uzelac for performing cytotoxicity evaluation.

Supplementary material

11030_2018_9899_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2855 kb)

References

  1. 1.
    Džimbeg G, Zorc B, Kralj M, Ester K, Pavelić K, Balzarini J, De Clercq E, Mintas M (2008) The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: synthesis, cytostatic and antiviral activity evaluations. Eur J Med Chem 43:1180–1187.  https://doi.org/10.1016/j.ejmech.2007.09.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Šimunović M, Perković I, Zorc B, Ester K, Kralj M, Hadjipavlou-Litina D, Pontiki E (2009) Urea and carbamate derivatives of primaquine: synthesis, cytostatic and antioxidant activities. Bioorg Med Chem 17:5605–5613.  https://doi.org/10.1016/j.bmc.2009.06.030 CrossRefPubMedGoogle Scholar
  3. 3.
    Perković I, Tršinar S, Žanetić J, Kralj M, Martin-Kleiner I, Balzarini J, Hadjipavlou-Litina D, Katsori AM, Zorc B (2013) Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine—synthesis, cytostatic, antiviral and antioxidative studies. J Enzym Inhib Med Chem 28:601–610.  https://doi.org/10.3109/14756366.2012.663366 CrossRefGoogle Scholar
  4. 4.
    Pavić K, Perković I, Cindrić M, Pranjić M, Martin-Kleiner I, Kralj M, Schols D, Hadjipavlou-Litina D, Katsori A-M, Zorc B (2014) Novel semicarbazides and ureas of primaquine with bulky aryl or hydroxyalkyl substituents: synthesis, cytostatic and antioxidative activity. Eur J Med Chem 86:502–514.  https://doi.org/10.1016/j.ejmech.2014.09.013 CrossRefPubMedGoogle Scholar
  5. 5.
    Kedzierska E, Orzelska J, Perković I, Knežević D, Fidecka S, Kaiser M, Zorc B (2016) Pharmacological activity of primaquine ureas and semicarbazides on central nervous system in mice and antimalarial activity in vitro. Fund Clin Pharmacol 30:58–69.  https://doi.org/10.1111/fcp.12161 CrossRefGoogle Scholar
  6. 6.
    Perković I, Antunović M, Marijanović I, Pavić K, Ester K, Kralj M, Vlainić J, Kosalec I, Schols D, Hadjipavlou-Litina D, Pontiki E, Zorc B (2016) Novel urea and bis-urea primaquine derivatives with hydroxyphenyl and halogenphenyl substituents: synthesis and biological evaluation. Eur J Med Chem 124:622–636.  https://doi.org/10.1016/j.ejmech.2016.08.021 CrossRefPubMedGoogle Scholar
  7. 7.
    Pavić K, Perković I, Gilja P, Kozlina F, Ester K, Kralj M, Schols D, Hadjipavlou-Litina D, Pontiki E, Zorc B (2016) Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of amide and acylsemicarbazide type. Molecules 21:1629–1653.  https://doi.org/10.3390/molecules21121629 CrossRefGoogle Scholar
  8. 8.
    Pavić K, Perković I, Pospíšilová Š, Machado M, Fontinha D, Prudêncio M, Jampilek J, Coffey A, Endersen L, Rimac H, Zorc B (2018) Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur J Med Chem 143:769–779.  https://doi.org/10.1016/j.ejmech.2017.11.083 CrossRefPubMedGoogle Scholar
  9. 9.
    Vlainić J, Kosalec I, Pavić K, Hadjipavlou-Litina D, Pontiki E, Zorc B (2018) Insights into biological activity of ureidoamides with primaquine and amino acid moieties. J Enzym Inhib Med Chem 33:376–382.  https://doi.org/10.1080/14756366.2017.1423067 CrossRefGoogle Scholar
  10. 10.
    Levatić J, Pavić K, Perković I, Uzelac L, Ester K, Kralj M, Kaiser M, Rottmann M, Supek F, Zorc B (2018) Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. Eur J Med Chem 146:651–667.  https://doi.org/10.1016/j.ejmech.2018.01.062 CrossRefPubMedGoogle Scholar
  11. 11.
    Mabeta P, Pavić K, Zorc B (2018) Insights into mechanism of antiproliferative effect of primaquine-cinnamic acid conjugates on MCF-7. Acta Pharm 68:337–348.  https://doi.org/10.2478/acph-2018-0021 CrossRefGoogle Scholar
  12. 12.
    Eswaran S, Adhikari AV, Pal NK, Chowdhury IH (2009) Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg Med Chem Lett 20:1040–1044.  https://doi.org/10.1016/j.bmcl.2009.12.045 CrossRefPubMedGoogle Scholar
  13. 13.
    Eswaran S, Vasudeva Adhikari A, Chowdhury IH, Pal NK, Thomas KD (2010) New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. Eur J Med Chem 45:3374–3383.  https://doi.org/10.1016/j.ejmech.2010.04.022 CrossRefPubMedGoogle Scholar
  14. 14.
    Nava-Zuazo C, Estrada-Soto S, Guerrero-Alvarez J, León-Rivera I, Molina-Salinas GM, Said-Fernández S, Chan-Bacab MJ, Cedillo-Rivera R, Moo-Puc R, Mirón-López G, Navarrete-Vazquez G (2010) Design, synthesis, and in vitro antiprotozoal, antimycobacterial activities of N-{2-[(7-chloroquinolin-4-yl)amino]ethyl}ureas. Bioorg Med Chem 18:6398–6403.  https://doi.org/10.1016/j.bmc.2010.07.008 CrossRefPubMedGoogle Scholar
  15. 15.
    Keri RS, Patil SA (2014) Quinoline: a promising antitubercular target. Biomed Pharmacother 68:1161–1175.  https://doi.org/10.1016/j.biopha.2014.10.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Singh S, Kaur G, Mangla V, Gupta MK (2015) Quinoline and quinolones: promising scaffolds for future antimycobacterial agents. J Enzyme Inhib Med Chem 30:492–504.  https://doi.org/10.3109/14756366.2014.930454 CrossRefPubMedGoogle Scholar
  17. 17.
    Kos J, Zadrazilova I, Nevin E, Soral M, Gonec T, Kollar P, Oravec M, Coffey A, O´Mahony J, Liptaj T, Kralova K, Jampilek J (2015) Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg Med Chem 23:4188–4196.  https://doi.org/10.1016/j.bmc.2015.06.047 CrossRefGoogle Scholar
  18. 18.
    Tseng C-H, Tung C-W, Wu C-H, Tzeng C-C, Chen Y-H, Hwang T-L, Chen Y-L (2017) Discovery of indeno[1,2-c]quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules 22:1001–1004.  https://doi.org/10.3390/molecules22061001 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Casall JJ, Asis SE (2017) Natural and synthetic quinoline derivatives as anti-tuberculosis agents. Austin Tuberc Res Treat 2:1007–1010Google Scholar
  20. 20.
    Chetty S, Ramesh M, Singh-Pillay A, Soliman MES (2017) Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 27:370–386.  https://doi.org/10.1016/j.bmcl.2016.11.084 CrossRefPubMedGoogle Scholar
  21. 21.
    Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D’Ambrosio L, Migliori GB (2018) New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology 24:86–98.  https://doi.org/10.1016/j.rppnen.2017.10.009 CrossRefPubMedGoogle Scholar
  22. 22.
    Bocanegra-García V, García A, Palma-Nicolás JP, Palos I, Rivera G (2011) Antitubercular drugs development: recent advances in selected therapeutic targets and rational drug design. In: Rundfeldt C (ed) Drug development—a case study based insight into modern strategies. InTech, Available http://www.intechopen.com/books/drug-developmenta-case-study-based-insight-into-modern-strategies/antitubercular-drugs-development-recent-advances-inselected-therapeutic-targets-and-rational-drug-d
  23. 23.
    Cunico W, Gomes CRB, Ferreira MLG, Ferreira TG, Cardinot D, de Souza MVN, Lourenço MCS (2011) Synthesis and anti-mycobacterial activity of novel amino alcohol derivatives. Eur J Med Chem 46:974–978.  https://doi.org/10.1016/j.ejmech.2011.01.004 CrossRefPubMedGoogle Scholar
  24. 24.
    Quiliano M, Pabón A, Moles E, Bonilla-Ramirez L, Fabing I, Fong KY, Nieto-Aco DA, Wright DW, Pizarro JC, Vettorazzi A, López de Cerain A, Deharo E, Fernández-Busquets X, Garavito G, Aldana I, Galiano S (2018) Structure-activity relationship of new antimalarial 1-aryl-3-substituted propanol derivatives: synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. Eur J Med Chem 152:489–514.  https://doi.org/10.1016/j.ejmech.2018.04.038 CrossRefPubMedGoogle Scholar
  25. 25.
    Lv Z, Chu Y, Wang Y (2015) HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 7:95–104.  https://doi.org/10.2147/HIV.S79956 CrossRefGoogle Scholar
  26. 26.
    Jayaprakash S, Iso Y, Wan B, Franzblau SG, Kozikowski AP (2006) Design, synthesis, and SAR studies of mefloquine-based ligands as potential antituberculosis agents. ChemMedChem 1:593–597.  https://doi.org/10.1002/cmdc.200600010 CrossRefPubMedGoogle Scholar
  27. 27.
    Krieger D, Vesenbeckh S, Schönfeld N, Bettermann G, Bauer TT, Rüssmann H, Mauch H (2015) Mefloquine as a potential drug against multidrug-resistant tuberculosis. Eur Respir J 46:1503–1505.  https://doi.org/10.1183/13993003.00321-2015 CrossRefPubMedGoogle Scholar
  28. 28.
    Gonçalves RS, Kaiser CR, Lourenço MC, de Souza MV, Wardell JL, Wardell SM, da Silva AD (2010) Synthesis and antitubercular activity of new mefloquine-oxazolidine derivatives. Eur J Med Chem 45:6095–6100.  https://doi.org/10.1016/j.ejmech.2010.09.024 CrossRefPubMedGoogle Scholar
  29. 29.
    Gonçalves RSB, Kaiser CR, Lourenço MCS, Bezerra FAFM, de Souza MVN, Wardell JL, Wardell SMSV, de Henriques MGMO, Costa T (2012) Mefloquine-oxazolidine derivatives, derived from mefloquine and arenecarbaldehydes: in vitro activity including against the multidrug-resistant tuberculosis strain T113. Bioorg Med Chem 20:243–248.  https://doi.org/10.1016/j.bmc.2011.11.006 CrossRefPubMedGoogle Scholar
  30. 30.
    Mao J, Yuan H, Wang Y, Wan B, Pak D, He R, Franzblau SG (2010) Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs. Bioorg Med Chem Lett 20:1263–1268.  https://doi.org/10.1016/j.bmcl.2009.11.105 CrossRefPubMedGoogle Scholar
  31. 31.
    Navarrete-Vázquez G, Molina-Salinas GM, Duarte-Fajardo ZV, Vargas-Villarreal V, Estrada-Soto S, González-Salazar F, Hernández-Núñez E, Said-Fernández S (2007) Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg Med Chem 15:5502–5508.  https://doi.org/10.1016/j.bmc.2007.05.053 CrossRefPubMedGoogle Scholar
  32. 32.
    Reddy V (2015) Organofluorine compounds in biology and medicine, 1st edn. Elsevier, AmsterdamGoogle Scholar
  33. 33.
    Chemicalize (2017) ChemAxon Ltd. Available http://www.chemicalize.org
  34. 34.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 46:3–26CrossRefGoogle Scholar
  35. 35.
    Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I (2002) Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 19:1446–1457CrossRefPubMedGoogle Scholar
  36. 36.
    Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717.  https://doi.org/10.1038/srep42717 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Acharya N, Varshney U (2002) Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 318:1251–1264CrossRefPubMedGoogle Scholar
  38. 38.
    Matveychuk A, Fuks L, Priess R, Hahim I, Shitrit D (2012) Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Respir Med 106:1472–1477.  https://doi.org/10.1016/j.rmed.2012.06.023 CrossRefPubMedGoogle Scholar
  39. 39.
    Haenen OL, Evans JJ, Berthe F (2013) Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Rev Sci Tech 32:497–507CrossRefPubMedGoogle Scholar
  40. 40.
    Gauthier DT (2015) Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 203:27–35.  https://doi.org/10.1016/j.tvjl.2014.10.028 CrossRefPubMedGoogle Scholar
  41. 41.
    Zheng H, Lu L, Wang B, Pu S, Zhang X, Zhu G, Shi W, Zhang L, Wang H, Wang S, Zhao G, Zhang Y (2008) Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3:e2375.  https://doi.org/10.1371/journal.pone.0002375 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jena L, Kashikar S, Kumar S, Harinath BC (2013) Comparative proteomic analysis of Mycobacterium tuberculosis strain H37Rv versus H37Ra. Int J Mycobacteriol 2:220–226.  https://doi.org/10.1016/j.ijmyco.2013.10.004 CrossRefPubMedGoogle Scholar
  43. 43.
    Kalčić I, Zovko M, Jadrijević-Mladar Takač M, Zorc B, Butula I (2003) Synthesis and reactions of some azolecarboxylic acid derivatives. Croat Chem Acta 76:217–228Google Scholar
  44. 44.
    Schwalbe R, Steele-Moore L, Goodwin AC (eds) (2007) Antimicrobial susceptibility testing protocols. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
  2. 2.Department of Pharmaceutical Chemistry, Faculty of PharmacyComenius UniversityBratislavaSlovakia

Personalised recommendations