A green, catalyst-free synthesis of pyrazolopyranopyrimidines in polyethylene glycol as a biodegradable medium at ambient temperature

  • Rezvan KardooniEmail author
  • Ali Reza Kiasat
Original Article


A facile, efficient and environmentally safe strategy for the synthesis of pyrazolopyranopyrimidines via one-pot, four-component reaction of hydrazine hydrate, barbituric acid, ethyl acetoacetate, and aromatic aldehydes in polyethylene glycol (PEG) as a safe solvent in the absence of catalyst at ambient temperature has been described. The advantages of the present protocol, such as simplicity, mild conditions, high yields of products, straightforward workup procedure, a green and biodegradable reaction medium, make this new process an attractive to current methodologies.

Graphical abstract


Polyethylene glycol (PEG-400) Catalyst-free Pyrazolopyranopyrimidines Multicomponent reaction Green synthesis One-pot synthesis 

Supplementary material

11030_2018_9898_MOESM1_ESM.odt (2.1 mb)
Supplementary material 1 (ODT 2136 kb)


  1. 1.
    Bihani M, Bora PP, Bez G, Askari H (2014) A green four-component synthesis of zwitterionic alkyl/benzyl pyrazolyl barbiturates and their photophysical studies. Mol Divers 18:745–757. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sindhu J, Singh H, Khurana J (2014) A green, multicomponent, regio-and stereo-selective 1, 3-dipolar cycloaddition of azides and azomethine ylides generated in situ with bifunctional dipolarophiles using PEG-400. Mol Divers 18:345–355. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kausar N, Al Masum A, Islam MM, Das AR (2017) A green synthetic approach toward the synthesis of structurally diverse spirooxindole derivative libraries under catalyst-free conditions. Mol Divers 21:325–337. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Khodabakhshi S, Rashidi A, Tavakoli Z, Baghernejad M, Yadegari A (2016) The first catalytic application of oxidized carbon nanotubes in a four-component synthesis of fused heterocycles. Monatsh Chem 147:791–795. CrossRefGoogle Scholar
  5. 5.
    Zheng Y-X, Xun Z, Zhang J-J, Huang Z-B, Shi D-Q (2017) An efficient one-pot synthesis of functionalized chromeno [4, 3-b] pyridine derivatives under catalyst-free conditions. Mol Divers 21:293–304. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barve IJ, Chen C-H, Kao C-H, Sun C-M (2014) Regioselective piperidine-catalyzed tandem imination-isocyanate annulation to fused tricyclic triazines. ACS Comb Sci 16:244–249. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ranatunga S, Tang C-HA, Kang CW, Kriss CL, Kloppenburg BJ, Hu C-CA, Del Valle JR (2014) Synthesis of novel tricyclic chromenone-based inhibitors of IRE-1 RNase activity. J Med Chem 57:4289–4301. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Williams DR, Mondal PK, Bawel SA, Nag PP (2014) Stereocontrolled synthesis of the tricyclic ABC ring system of daphnicyclidin A. Org Lett 16:1956–1959. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Oonishi Y, Kitano Y, Sato Y (2013) Construction of tricyclic pyran derivatives through intramolecular [2 + 2 + 2] cycloaddition of allenynes with tethered aldehydes. Tetrahedron 69:7713–7718. CrossRefGoogle Scholar
  10. 10.
    Patil KT, Jamale DK, Valekar NJ, Patil PT, Warekar PP, Kolekar GB, Anbhule PV (2017) Uncatalyzed four-component synthesis of pyrazolopyranopyrimidine derivatives and their antituberculosis activities. Synth Commun 47:111–120. CrossRefGoogle Scholar
  11. 11.
    Dastkhoon S, Tavakoli Z, Khodabakhshi S, Baghernejad M, Abbasabadi MK (2015) Nanocatalytic one-pot, four-component synthesis of some new triheterocyclic compounds consisting of pyrazole, pyran, and pyrimidinone rings. New J Chem 39:7268–7271. CrossRefGoogle Scholar
  12. 12.
    Saha A, Payra S, Banerjee S (2015) One-pot multicomponent synthesis of highly functionalized bio-active pyrano [2, 3-c] pyrazole and benzylpyrazolyl coumarin derivatives using ZrO 2 nanoparticles as a reusable catalyst. Green Chem 17:2859–2866. CrossRefGoogle Scholar
  13. 13.
    Kanagaraj K, Pitchumani K (2010) Solvent-free multicomponent synthesis of pyranopyrazoles: per-6-amino-β-cyclodextrin as a remarkable catalyst and host. Tetrahedron Lett 51:3312–3316. CrossRefGoogle Scholar
  14. 14.
    Wang J-L, Liu D, Zhang Z-J, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 97:7124–7129. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rajendra Prasad Y, Lakshmana Rao A, Prasoona L, Murali K, Ravi Kumar P (2005) Synthesis and antidepressant activity of some 1,3,5-triphenyl-2-pyrazolines and 3-(2″-hydroxy naphthalen-1″-yl)-1,5-diphenyl-2-pyrazolines. Bioorg Med Chem Lett 15:5030–5034. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Myrboh B, Mecadon H, Rohman MR, Rajbangshi M, Kharkongor I, Laloo BM, Kharbangar I, Kshiar B (2013) Synthetic developments in functionalized pyrano [2, 3-c] pyrazoles. A review. Org Prep Proced Int 45:253–303. CrossRefGoogle Scholar
  17. 17.
    Maleki A, Jafari AA, Yousefi S (2017) Green cellulose-based nanocomposite catalyst: design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines. Carbohydr Polym 175:409–416. CrossRefPubMedGoogle Scholar
  18. 18.
    Kiasat AR, Fallah-Mehrjardi M (2008) Polyethylene glycol: a cheap and efficient medium for the thiocyanation of alkyl halides. Bull Korean Chem Soc 29:2346–2348. CrossRefGoogle Scholar
  19. 19.
    Kardooni R, Kiasat AR (2018) Bifunctional PEG/NH2 silica-coated magnetic nanocomposite: an efficient and recoverable core–shell-structured catalyst for one pot multicomponent synthesis of 3-alkylated indoles via Yonemitsu-type condensation. J Taiwan Inst Chem Eng 87:241–251. CrossRefGoogle Scholar
  20. 20.
    Kardooni R, Kiasat AR, Motamedi H (2017) Designing of a novel dual-function silica-iron oxide hybrid based nanocomposite, Fe3O4@ SiO2-PEG/NH2, and its application as an eco-catalyst for the solvent-free synthesis of polyhydroacridines and polyhydroquinolines. J Taiwan Inst Chem Eng 81:373–382. CrossRefGoogle Scholar
  21. 21.
    Kiasat A, Fallah-Mehrjardi M (2009) An efficient catalyst-free ring opening of epoxides in peg-300: a versatile method for the synthesis of vicinal azidoalcohols. J Iran Chem Soc 6:542–546. CrossRefGoogle Scholar
  22. 22.
    Rajanarendar E, Govardhan Reddy K, Nagi Reddy M, Raju S, Rama Murthy K (2011) Polyethylene glycol (PEG) mediated synthesis of pyrrolo-[2, 3-d] isoxazoles by using NaOCl reagent—a green chemistry approach. Green Chem Lett Rev 4:257–260. CrossRefGoogle Scholar
  23. 23.
    Vafaeezadeh M, Hashemi MM (2015) Polyethylene glycol (PEG) as a green solvent for carbon–carbon bond formation reactions. J Mol Liq 207:73–79. CrossRefGoogle Scholar
  24. 24.
    Kauthale SS, Tekale SU, Jadhav KM, Pawar RP (2016) Ethylene glycol promoted catalyst-free pseudo three-component green synthesis of bis (coumarin) s and bis (3-methyl-1-phenyl-1H-pyrazol-5-ol) s. Mol Divers 20:763–770. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cherkupally SR, Mekala R (2008) P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation. Chem Pharm Bull 56:1002–1004. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7:64–82. CrossRefGoogle Scholar
  27. 27.
    Balasubramanian D, Chandani B (1983) Poly (ethylene glycol): a poor chemist’s crown. J Chem Educ 60:77. CrossRefGoogle Scholar
  28. 28.
    Alessi ML, Norman AI, Knowlton SE, Ho DL, Greer SC (2005) Helical and coil conformations of poly (ethylene glycol) in isobutyric acid and water. Macromolecules 38:9333–9340. CrossRefGoogle Scholar
  29. 29.
    Brahmachari G, Banerjee B (2013) Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain Chem Eng 2:411–422. CrossRefGoogle Scholar
  30. 30.
    Khanna G, Saluja P, Khurana JM (2016) Catalyst free ethylene glycol promoted synthesis of spiro [indene-2, 2′-naphthalene]-4′-carbonitriles and spiro [naphthalene-2, 5′-pyrimidine]-4-carbonitriles via one-pot three-component reaction. Tetrahedron Lett 57:5852–5855. CrossRefGoogle Scholar
  31. 31.
    Tiwari AR, Bhanage BM (2016) Polythene glycol (PEG) as a reusable solvent system for the synthesis of 1, 3, 5-triazines via aerobic oxidative tandem cyclization of benzylamines and N-substituted benzylamines with amidines under transition metal-free conditions. Green Chem 18:144–149. CrossRefGoogle Scholar
  32. 32.
    Heravi MM, Mousavizadeh F, Ghobadi N, Tajbakhsh M (2014) A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Lett 55:1226–1228. CrossRefGoogle Scholar
  33. 33.
    Li X-T, Zhao A-D, Mo L-P, Zhang Z-H (2014) Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Adv 4:51580–51588. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Khuzestan Science and Research BranchIslamic Azad UniversityAhvazIran
  2. 2.Department of Chemistry, Ahvaz BranchIslamic Azad UniversityAhvazIran
  3. 3.Chemistry Department, College of ScienceShahid Chamran University of AhvazAhvazIran

Personalised recommendations