Ammonium chloride-catalyzed green multicomponent synthesis of dihydropyrazine and tetrahydrodiazepine derivatives “on water”

  • Ahmad ShaabaniEmail author
  • Heshmatollah Sepahvand
  • Shima Ghasemi
Original Article


This research describes a simple and efficient one-pot synthetic approach for the preparation of tetrahydrodiazepine and dihydropyrazine (or dihydroquinoxaline) derivatives in high yields in the presence of a substoichiometric amount of ammonium chloride as a green accelerator on water at 50 °C within 1–3 h.

Graphical abstract


Diazepine Pyrazine Quinoxaline Ammonium chloride On water synthesis 



We gratefully acknowledge financial support from the Iran National Science Foundation (INSF) and Research Council of Shahid Beheshti University.

Supplementary material

11030_2018_9893_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2762 kb)


  1. 1.
    Clark JH (1999) Green chemistry: challenges and opportunities. Green Chem 1:1CrossRefGoogle Scholar
  2. 2.
    Sheldon RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Anastas PT, Warner JC (2000) Green chemistry: theory and practice, vol 30. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Albini A, Protti S (2016) Paradigms in green chemistry and technology. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Gaich T, Baran PS (2010) Aiming for the ideal synthesis. J Organ Chem 75:4657CrossRefGoogle Scholar
  6. 6.
    Wender P, Handy S, Wright D (1997) Towards the ideal synthesis: an everyday tool in the world of the chemical industry, syntheses are still some way from beingideal'. Chem Ind 765Google Scholar
  7. 7.
    Ugi I, Werner B, Dömling A (2003) The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 8:53CrossRefGoogle Scholar
  8. 8.
    Lubineau A, Augé J, Queneau Y (1994) Water-promoted organic reactions. Synthesis 1994:741CrossRefGoogle Scholar
  9. 9.
    Jaiswal PK, Sharma V, Prikhodko J, Mashevskaya IV, Chaudhary S (2017) “On water” ultrasound-assisted one pot efficient synthesis of functionalized 2-oxo-benzo [1,4]oxazines: First application to the synthesis of anticancer indole alkaloid, Cephalandole A. Tetrahedron Lett 58:2077CrossRefGoogle Scholar
  10. 10.
    Zeng L-Y, Liu T, Yang J, Yang Y, Cai C, Liu S-W (2017) “On-water” facile synthesis of novel pyrazolo [3,4-b] pyridinones possessing anti-influenza virus activity. ACS Comb Sci 19(7):437–446CrossRefGoogle Scholar
  11. 11.
    Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168CrossRefGoogle Scholar
  12. 12.
    Zhu J, Bienaymé H (2006) Multicomponent reactions. Wiley, New YorkGoogle Scholar
  13. 13.
    Ugi I, Dömling A, Hörl W (1994) Multicomponent reactions in organic chemistry. Endeavour 18:115CrossRefGoogle Scholar
  14. 14.
    Nair V, Rajesh C, Vinod A et al (2003) Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc Chem Res 36:899CrossRefGoogle Scholar
  15. 15.
    Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12:324CrossRefGoogle Scholar
  16. 16.
    Pal R (2013) Recent progress of ammonium chloride as catalyst in organic synthesis. IOSR J Appl Chem 4:86CrossRefGoogle Scholar
  17. 17.
    Bonne D, Dekhane M, Zhu J (2004) Ammonium chloride promoted ugi four-component, five-center reaction of α-substituted α-isocyano acetic acid: a strong solvent effect. Org Lett 6:4771CrossRefGoogle Scholar
  18. 18.
    Dabiri M, Bahramnejad M, Baghbanzadeh M (2009) Ammonium salt catalyzed multicomponent transformation: simple route to functionalized spirochromenes and spiroacridines. Tetrahedron 65:9443CrossRefGoogle Scholar
  19. 19.
    Larsen SD, Grieco PA (1985) Aza Diels-Alder reactions in aqueous solution: cyclocondensation of dienes with simple iminium salts generated under Mannich conditions. J Am Chem Soc 107:1768CrossRefGoogle Scholar
  20. 20.
    Janvier P, Sun X, Bienaymé H, Zhu J (2002) Ammonium chloride-promoted four-component synthesis of pyrrolo [3,4-b]pyridin-5-one. J Am Chem Soc 124:2560CrossRefGoogle Scholar
  21. 21.
    Shaabani A, Bazgir A, Teimouri F (2003) Ammonium chloride-catalyzed one-pot synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Tetrahedron Lett 44:857CrossRefGoogle Scholar
  22. 22.
    Bonne D, Dekhane M, Zhu J (2005) Exploiting the dual reactivity of o-isocyanobenzamide: three-component synthesis of 4-imino-4 H-3, 1-benzoxazines. Org Lett 7:5285CrossRefGoogle Scholar
  23. 23.
    Fayol A, Zhu J (2004) Synthesis of polysubstituted 4,5,6,7-tetrahydrofuro [2,3-c] pyridines by a novel multicomponent reaction. Org Lett 6:115CrossRefGoogle Scholar
  24. 24.
    Foroughifar N, Mobinikhaledi A, Moghanian H, Mozafari R, Esfahani HR (2011) Ammonium chloride-catalyzed one-pot synthesis of tetrahydrobenzo [α] xanthen-11-one derivatives under solvent-free conditions. Synth Commun 41:2663CrossRefGoogle Scholar
  25. 25.
    Mobinikhaledi A, Mosleh T, Foroughifar N (2015) Triethyl benzyl ammonium chloride (TEBAC) catalyzed solvent-free one-pot synthesis of pyrimido [4,5-d]pyrimidines. Res Chem Intermed 41:2985CrossRefGoogle Scholar
  26. 26.
    Hussein E (2015) Ammonium chloride-catalyzed four-component sonochemical synthesis of novel hexahydroquinolines bearing a sulfonamide moiety. Russ J Org Chem 51:54CrossRefGoogle Scholar
  27. 27.
    Ahumada G, Carrillo D, Manzur C, Fuentealba M, Roisnel T, Hamon J-R (2016) A facile access to new diazepines derivatives: Spectral characterization and crystal structures of 7-(thiophene-2-yl)-5-(trifluoromethyl)-2, 3-dihydro-1H-1, 4-diazepine and 2-thiophene-4-trifluoromethyl-1, 5-benzodiazepine. J Mol Struct 1125:781–787CrossRefGoogle Scholar
  28. 28.
    Raboisson P, Marugán JJ, Schubert C et al (2005) Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists. Bioorg Med Chem Lett 15:1857CrossRefGoogle Scholar
  29. 29.
    Fryer RI (2009) The chemistry of heterocyclic compounds, bicyclic diazepines: diazepines with an additional ring. Wiley, New YorkGoogle Scholar
  30. 30.
    Seitz LE, Suling WJ, Reynolds RC (2002) Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J Med Chem 45:5604CrossRefGoogle Scholar
  31. 31.
    Li J-Y, Cragoe E Jr, Lindemann B (1985) Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications. J Membr Biol 83:45CrossRefGoogle Scholar
  32. 32.
    Boström J, Berggren K, Elebring T, Greasley PJ, Wilstermann M (2007) Scaffold hopping, synthesis and structure–activity relationships of 5, 6-diaryl-pyrazine-2-amide derivatives: a novel series of CB1 receptor antagonists. Bioorg Med Chem 15:4077CrossRefGoogle Scholar
  33. 33.
    Fink M, Irwin P, Weinfeld RE, Schwartz MA, Canney AH (1976) Blood levels and electroencephalographic effects of diazepam and bromazepam. Clin Pharmacol Ther 20:184CrossRefGoogle Scholar
  34. 34.
    Chowdary K, Rao YS (2003) Design and in vitro and in vivo evaluation of mucoadhesive microcapsules of glipizide for oral controlled release: a technical note. AAPS PharmSciTech 4:87CrossRefGoogle Scholar
  35. 35.
    Pozarentzi M, Stephanidou-Stephanatou J, Tsoleridis CA (2002) An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Lett 43:1755CrossRefGoogle Scholar
  36. 36.
    Shaabani A, Maleki A, Hajishaabanha F et al (2009) Novel syntheses of tetrahydrobenzodiazepines and dihydropyrazines via isocyanide-based multicomponent reactions of diamines. J Comb Chem 12:186CrossRefGoogle Scholar
  37. 37.
    Shaabani A, Maleki A, Mofakham H, Moghimi-Rad J (2008) A novel one-pot pseudo-five-component synthesis of 4,5,6,7-tetrahydro-1 H-1,4-diazepine-5-carboxamide derivatives. J Organ Chem 73:3925CrossRefGoogle Scholar
  38. 38.
    Neochoritis CG, Tsoleridis CA, Stephanidou-Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ (2010) 1,5-Benzoxazepines vs 1,5-benzodiazepines. One-pot microwave-assisted synthesis and evaluation for antioxidant activity and lipid peroxidation inhibition. J Med Chem 53:8409CrossRefGoogle Scholar
  39. 39.
    Shaabani A, Maleki A, Moghimi-Rad J (2007) A novel isocyanide-based three-component reaction: synthesis of highly substituted 1,6-dihydropyrazine-2, 3-dicarbonitrile derivatives. J Organ Chem 72:6309CrossRefGoogle Scholar
  40. 40.
    Park Y-I, Son J-H, Kang J-S, Kim S-K, Lee J-H, Park J-W (2008) Synthesis and electroluminescence properties of novel deep blue emitting 6, 12-dihydro-diindeno [1, 2-b; 1′, 2′-e] pyrazine derivatives. Chem Commun 18:2143CrossRefGoogle Scholar
  41. 41.
    Thakuria H, Das G (2006) One-pot efficient green synthesis of 1, 4-dihydro-quinoxaline-2, 3-dione derivatives. J Chem Sci 118:425CrossRefGoogle Scholar
  42. 42.
    Li J, Liu Y, Li C, Jia X (2009) CAN-catalyzed syntheses of 3, 4-dihydroquinoxalin-2-amine derivatives based on isocyanides. Tetrahedron Lett 50:6502CrossRefGoogle Scholar
  43. 43.
    Chari MA (2011) Amberlyst-15: an efficient and reusable catalyst for multi-component synthesis of 3, 4-dihydroquinoxalin-2-amine derivatives at room temperature. Tetrahedron Lett 52:6108CrossRefGoogle Scholar
  44. 44.
    Shobha D, Chari MA, Mukkanti K, Kim SY (2012) Synthesis and anti-neuroinflammatory activity studies of substituted 3, 4-dihydroquinoxalin-2-amine derivatives. Tetrahedron Lett 53:2675CrossRefGoogle Scholar
  45. 45.
    Kolla SR, Lee YR (2010) EDTA-catalyzed synthesis of 3,4-dihydroquinoxalin-2-amine derivatives by a three-component coupling of one-pot condensation reactions in an aqueous medium. Tetrahedron 66:8938CrossRefGoogle Scholar
  46. 46.
    Maleki A (2012) Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron 68:7827CrossRefGoogle Scholar
  47. 47.
    Shobha D, Chari MA, Sang L-C, Aldeyab SS, Mukkanti K, Vinu A (2011) Room-temperature multicomponent synthesis of 3,4-dihydroquinoxalin-2-amine derivatives using highly ordered 3D nanoporous aluminosilicate catalyst. Synlett 2011:1923CrossRefGoogle Scholar
  48. 48.
    Shaabani A, Maleki A, Mofakham H (2008) Novel multicomponent one-pot synthesis of tetrahydro-1 H-1,5-benzodiazepine-2-carboxamide derivatives. J Comb Chem 10:595CrossRefGoogle Scholar
  49. 49.
    Shaabani A, Soleimani E, Maleki A, Moghimi-Rad J (2009) A novel class of extended pi-conjugated systems: one-pot synthesis of bis-3-aminoimidazo [1,2-a] pyridines, pyrimidines and pyrazines. Mol Divers 13:269CrossRefGoogle Scholar
  50. 50.
    Tracy DJ (1979) Catalytic effect of ammonium chloride on the synthesis of imidate esters. J Heterocycl Chem 16:1287CrossRefGoogle Scholar
  51. 51.
    Shaabani A, Maleki A, Mofakham H, Khavasi HR (2008) Novel isocyanide-based three-component synthesis of 3, 4-dihydroquinoxalin-2-amine derivatives. J Comb Chem 10:323CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ahmad Shaabani
    • 1
    Email author
  • Heshmatollah Sepahvand
    • 1
  • Shima Ghasemi
    • 1
  1. 1.Department of ChemistryShahid Beheshti UniversityTehranIran

Personalised recommendations