Skip to main content

Advertisement

Log in

In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: a multicomplex-based approach

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Drug resistance has made malaria an untreatable disease and therefore intensified the need for the development of new drugs and the identification of potential drug targets. In this pursuit, in silico efforts made in the past have not shown significant responses. Therefore, in the present work, the multicomplex-based pharmacophore modeling approach was employed to construct the pharmacophores of the 16 selected Plasmodium falciparum (Pf) targets. All the constructed hypotheses (153) were screened against a focused dataset made up of experimental actives of the chosen targets (3705 inhibitors). The rationale was to check the affinity of the inhibitors for the off-targets. Subsequently, the constructed hypotheses from each target were pooled based on the feature types and the pooled-hypotheses were then clustered to offer an insight about the pharmacophore similarity. Tanimoto similarity index was also calculated to look for the similarity among the inhibitors belonging to different Pf targets. Overall, the work was accomplished to bid healthier perceptive of the pharmacophore-based virtual screening and abet in providing guiding principles for the construction of stringent pharmacophores that can be employed for the screening.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214. https://doi.org/10.1038/nature03342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organisation- WHO (2016) World malaria report 2015. WHO. http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/. Accessed 19 April 2016

  3. World Health Organisation- WHO (2015) Investing to overcome the global impact of neglected tropical diseases: 3rd WHO report on neglected tropical diseases, vol 3. World Health Organization-WHO, Geneva

    Google Scholar 

  4. Bhatt S, Weiss D, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K, Moyes C, Henry A, Eckhoff P (2015) The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526:207. https://doi.org/10.1038/nature15535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cui L, Mharakurwa S, Ndiaye D, Rathod PK, Rosenthal PJ (2015) Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg 93:57–68. https://doi.org/10.4269/ajtmh.15-0007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Paloque L, Ramadani AP, Mercereau-Puijalon O, Augereau J-M, Benoit-Vical F (2016) Plasmodium falciparum: multifaceted resistance to artemisinins. Malar J 15:149. https://doi.org/10.1186/s12936-016-1206-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verlinden BK, Louw A, Birkholtz L-M (2016) Resisting resistance: is there a solution for malaria? Expert Opin Drug Discov 11:395–406. https://doi.org/10.1517/17460441.2016.1154037

    Article  CAS  PubMed  Google Scholar 

  8. Müller IB, Hyde JE (2010) Antimalarial drugs: modes of action and mechanisms of parasite resistance. Future Microbiol 5:1857–1873. https://doi.org/10.2217/fmb.10.136

    Article  PubMed  Google Scholar 

  9. World Health Organisation- WHO (2016) Malaria vaccine: WHO position paper- January 2016. Wkly Epidemiol Rec 91:33–52. http://apps.who.int/iris/bitstream/handle/10665/254285/wer9104_33-52.pdf?sequence=1&isAllowed=y. Accessed Jan 2016

  10. Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694. https://doi.org/10.3762/bjoc.12.267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langer T, Hoffmann RD (2006) Pharmacophores and Pharmacophore Searches, vol 32. WILEY-VCH Verlag GmbH & Co., KGaA, Weinheim

    Book  Google Scholar 

  12. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 152:9–20. https://doi.org/10.1038/sj.bjp.0707305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: applications to targets and beyond. Br J Pharmacol 152:21–37. https://doi.org/10.1038/sj.bjp.0707306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450. https://doi.org/10.1016/j.drudis.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  15. Kurogi Y, Guner OF (2001) Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8:1035–1055. https://doi.org/10.2174/0929867013372481

    Article  CAS  PubMed  Google Scholar 

  16. Guner O (2002) History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem 2:1321–1332. https://doi.org/10.2174/1568026023392940

    Article  CAS  PubMed  Google Scholar 

  17. Xiao Z, Varma S, Xiao Y-D, Tropsha A (2004) Modeling of p38 mitogen-activated protein kinase inhibitors using the Catalyst™ HypoGen and k-nearest neighbor QSAR methods. J Mol Graph Model 23:129–138. https://doi.org/10.1016/j.jmgm.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  18. Kirchmair J, Laggner C, Wolber G, Langer T (2005) Comparative analysis of protein-bound ligand conformations with respect to catalyst’s conformational space subsampling algorithms. J Chem Inf Model 45:422–430. https://doi.org/10.1021/ci049753l

    Article  CAS  PubMed  Google Scholar 

  19. Kirchmair J, Wolber G, Laggner C, Langer T (2006) Comparative performance assessment of the conformational model generators omega and catalyst: a large-scale survey on the retrieval of protein-bound ligand conformations. J Chem Inf Model 46:1848–1861. https://doi.org/10.1021/ci060084g

    Article  CAS  PubMed  Google Scholar 

  20. Kirchmair J, Ristic S, Eder K, Markt P, Wolber G, Laggner C, Langer T (2007) Fast and efficient in silico 3D screening: toward maximum computational efficiency of pharmacophore-based and shape-based approaches. J Chem Inf Model 47:2182–2196. https://doi.org/10.1021/ci700024q

    Article  CAS  PubMed  Google Scholar 

  21. Kristam R, Gillet VJ, Lewis RA, Thorner D (2005) Comparison of conformational analysis techniques to generate pharmacophore hypotheses using catalyst. J Chem Inf Model 45:461–476. https://doi.org/10.1021/ci049731z

    Article  CAS  PubMed  Google Scholar 

  22. Manhas A, Patel A, Lone MY, Jha PK, Jha PC (2018) Identification of PfENR inhibitors: a hybrid structure based approach in conjunction with molecular dynamics simulations. J Cell Biochem. https://doi.org/10.1002/jcb.27075

  23. Manhas A, Kumar SP, Jha PC (2016) Molecular modeling of Plasmodium falciparum peptide deformylase and structure-based pharmacophore screening for inhibitors. RSC Adv 6:29466–29485. https://doi.org/10.1039/C6RA01071G

    Article  CAS  Google Scholar 

  24. Manhas A, Lone MY, Jha PC (2017) Multicomplex-based pharmacophore modeling coupled with molecular dynamics simulations: an efficient strategy for the identification of novel inhibitors of PfDHODH. J Mol Graph Model 75:413–423. https://doi.org/10.1016/j.jmgm.2017.04.025

    Article  CAS  PubMed  Google Scholar 

  25. Lone MY, Kumar SP, Athar M, Jha PC (2018) Exploration of Mycobacterium tuberculosis structural proteome: an in silico approach. J Theor Biol 439:14–23. https://doi.org/10.1016/j.jtbi.2017.11.021

    Article  CAS  PubMed  Google Scholar 

  26. Lone MY, Athar M, Gupta VK, Jha PC (2017) Prioritization of natural compounds against mycobacterium tuberculosis 3-dehydroquinate dehydratase: a combined in silico and in vitro study. Biochem Biophys Res Commun 491:1105–1111. https://doi.org/10.1016/j.bbrc.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  27. Lone MY, Athar M, Gupta VK, Jha PC (2017) Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: a combined in silico and in vitro analysis. J Mol Graph Model 76:172–180. https://doi.org/10.1016/j.jmgm.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  28. Lone MY, Manhas A, Athar M, Jha PC (2017) Identification of InhA inhibitors: a combination of virtual screening, molecular dynamics simulations and quantum chemical studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2017.1372313

  29. Accelrys Discovery Studio version 4.0, Accelrys, San Diego, USA. https://www.accelrys.com/products/collaborativescience/biovia-discovery-studio/

  30. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2006) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucl Acids Res 35:D198–D201. https://doi.org/10.1093/nar/gkl999

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B (2011) ChEMBL: a large-scale bioactivity database for drug discovery. Nucl Acids Res 40:1100–1107. https://doi.org/10.1093/nar/gkr777

    Article  CAS  Google Scholar 

  32. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217. https://doi.org/10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  33. Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349. https://doi.org/10.1126/science.275.5298.343

    Article  CAS  PubMed  Google Scholar 

  34. Zhou L, Griffith R, Gaeta B (2014) Combining spatial and chemical information for clustering pharmacophores. BMC Bioinformatics 15:S5. https://doi.org/10.1186/1471-2105-15-S16-S5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Anu Manhas and PCJ acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (DST) for project grant through grant number EMR/2016/003025. MY Lone acknowledges the University Grants Commission (UGC), Govt. of India for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash C. Jha.

Ethics declarations

Conflict of interest

The authors declared no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5066 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manhas, A., Lone, M.Y. & Jha, P.C. In search of the representative pharmacophore hypotheses of the enzymatic proteome of Plasmodium falciparum: a multicomplex-based approach. Mol Divers 23, 453–470 (2019). https://doi.org/10.1007/s11030-018-9885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9885-5

Keywords

Navigation