Advertisement

Synthesis and antiphytoviral activity of α-aminophosphonates containing 3, 5-diphenyl-2-isoxazoline as potential papaya ringspot virus inhibitors

  • Zhi-Gang Zeng
  • Niu Liu
  • Fei Lin
  • Xun-Yuan Jiang
  • Han-Hong Xu
Original Article
  • 58 Downloads

Abstract

α-Aminophosphonates compounds containing 3,5-diphenyl-2-isoxazoline were synthesized and evaluated for their bioactivity. Seventeen of them showed good bioactivity (protection effect > 50%) in vivo against papaya ringspot virus, while two of them (V29 and V45) exhibited excellent antiviral activity (both 77.8%). In the latter case, the antiviral activity was close to that of antiphytovirucides ningnanmycin and dufulin (both 83.3%) at 500 mg/L. The preliminary structure–activity relationships indicated that the bioactivity was strongly influenced by the substituents.

Graphical abstract

Keywords

α-Aminophosphonates 3, 5-Diphenyl-2-isoxazoline Synthesis Anti-PRSV activity Structure–activity relationships 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 31601675) and the Specialized Research Fund for the Doctoral Program of Education of China (Grant No. 20134404130003). We thank Dr. Xueqin Rao (Department of Plant Pathology, South China Agricultural University) and Dr. Duo Lai (Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, China) for their kind help in screening the compounds for biological activity.

Supplementary material

11030_2018_9877_MOESM1_ESM.docx (19.2 mb)
Supplementary material 1 (DOCX 19635 kb)

References

  1. 1.
    Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415–437.  https://doi.org/10.1146/annurev.phyto.36.1.415 CrossRefPubMedGoogle Scholar
  2. 2.
    Tripathi S, Suzuki JY, Ferreira SA, Gonsalves D (2008) Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9:269–280.  https://doi.org/10.1111/j.1364-3703.2008.00467.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Davis MJ, Ying Z (2004) Development of papaya breeding lines with transgenic resistance to papaya ringspot virus. Plant Dis 88:352–358.  https://doi.org/10.1094/PDIS.2004.88.4.352 CrossRefGoogle Scholar
  4. 4.
    Ling K, Namba S, Gonsalves C, Slightom JL, Gonsalves D (1991) Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Nat Biotechnol 9:752–758.  https://doi.org/10.1038/nbt0891-752 CrossRefGoogle Scholar
  5. 5.
    Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic papaya plants from agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 12:245–249.  https://doi.org/10.1007/BF00237128 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii. Plant Dis 86:101–105.  https://doi.org/10.1094/PDIS.2002.86.2.101 CrossRefGoogle Scholar
  7. 7.
    Tripathi S, Suzuki J, Gonsalves D (2007) Development of genetically engineered resistant papaya for papaya ringspot virus in a timely manner: a comprehensive and successful approach. Plant-pathogen interactions: methods and protocols 354:197–240.  https://doi.org/10.1385/1-59259-966-4:197 CrossRefGoogle Scholar
  8. 8.
    Davidson SN (2008) Forbidden fruit: transgenic papaya in Thailand. Plant Physiol 147:487–493.  https://doi.org/10.1104/pp.108.116913 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hu DY, Wan QQ, Yang S, Song BA, Bhadury PS, Jin LH, Yan K, Liu F, Chen Z, Xue W (2008) Synthesis and antiviral activities of amide derivatives containing the α-aminophosphonate moiety. J Agric Food Chem 56:998–1001.  https://doi.org/10.1021/jf072394k CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lu P, Yang S, Hu DY, Ding XY, Shi MM (2013) Synthesis of hapten and development of immunoassay based on monoclonal antibody for the detection of dufulin in agricultural samples. J Agric Food Chem 61:10302–10309.  https://doi.org/10.1021/jf4025954 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yu XL, Wei P, Wang ZW, Liu YX, Wang LZ, Wang QM (2016) Design, synthesis, antiviral activity and mode of action of phenanthrene-containing N-heterocyclic compounds inspired by the phenanthroindolizidine alkaloid antofine. Pest Manag Sci 72:371–378.  https://doi.org/10.1002/ps.4008 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chen RY, Dai Q, Zhang D, Yang XF (1995) Synthesis of O, O-diethyl-α-(p-toluenesulphonamido) phosphonates by Mannich-type reaction. Sci China, Ser B 38:1153–1157Google Scholar
  13. 13.
    Bartlett PA, Kezer WB (1984) Phosphinic acid dipeptide analogs: potent, slow-binding inhibitors of aspartic peptidases. J Am Chem Soc 106:4282–4283.  https://doi.org/10.1021/ja00327a046 CrossRefGoogle Scholar
  14. 14.
    Stowasser B, Budt KH, Li JQ, Anusch P, Dieter R (1992) New hybrid transition state analog inhibitors of HIV protease with peripheric C2-symmetry. Tetrahedron Lett 33:6625–6628.  https://doi.org/10.1016/S0040-4039(00)61002-X CrossRefGoogle Scholar
  15. 15.
    Wang ZC, Li XY, Wang WL, Zhang WY, Lu Y, Hu DY, Song BA (2015) Interaction research on the antiviral molecule dufulin targeting on southern rice black streaked dwarf virus p9-1 nonstructural protein. Viruses. 7:1454–1473.  https://doi.org/10.3390/v7031454 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zeng ZG, Yan Y, Wang BF, Liu N, Xu HH (2017) Discovery and identification of O, O-diethyl O-(4-(5-phenyl-4,5-dihydroisoxazol-3-yl) phenyl) phosphorothioate (XP-1408) as a novel mode of action of organophosphorus insecticides. Sci Rep 7:3617.  https://doi.org/10.1038/s41598-017-03663-3 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kai H, Matsumoto H, Hattori N, Takase A, Fujiwara T, Sugimoto H (2001) Anti-influenza virus activities of 2-alkoxyimino-N-(2-isoxazolin-3-ylmethyl) acetamides. Bioorg Med Chem Lett 11:1997–2000.  https://doi.org/10.1016/S0960-894X(01)00362-6 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liu G, Song S, Liu X, Zhang A, Miao ZH, Ding CY (2016) Novel dihydroisoxazoline-alkyl carbon chain hybrid artemisinin analogues (artemalogs): synthesis and antitumor activities. RSC Adv 6:98975–98984.  https://doi.org/10.1039/C6RA17323C CrossRefGoogle Scholar
  19. 19.
    Olson RE, Sielecki TM, Wityak J, Pinto DJ, Batt DG, Frietze WE, Liu J, Tobin AE, Orwat MJ, Di Meo SV, Houghton GC, Lalka GK, Mousa SA, Racanelli AL, Hausner EA, Kapil RP, Rabel SR, Thoolen MJ, Reilly TM, Anderson PS, Wexler RR (1999) Orally active isoxazoline glycoprotein IIb/IIIa antagonists with extended duration of action. J Med Chem 42:1178–1192.  https://doi.org/10.1021/jm980348t CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kang YK, Shin KJ, Yoo KH, Seoa KJ, Hong CY, Leeb CS, Park SY, Kim DJ, Park SW (2000) Synthesis and antibacterial activity of new carbapenems containing isoxazole moiety. Bioorg Med Chem Lett 10:95–99.  https://doi.org/10.1016/S0960-894X(99)00646-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Goyal A, Sharma S, Gaba J, Kaur H (2016) Green synthesis of isoxazoline derivatives using microwave irradiation and their antifungal activity. Asian J Chem 28: 2169-2172.  https://doi.org/10.14233/ajchem.2016.19900 CrossRefGoogle Scholar
  22. 22.
    Ozoe Y, Asahi M, Ozoe F, Nakahirab K, Mitac T (2010) The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels. Biochem Biophys Res Commun 391:744–749.  https://doi.org/10.1016/j.bbrc.2009.11.131 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kumar PR, Behera M, Raghavulu K, Shree AJ, Yennam S (2012) Synthesis of novel isoxazole-benzoquinone hybrids via 1, 3-dipolar cycloaddition reaction as key step. Tetrahedron Lett 53:4108–4113.  https://doi.org/10.1016/j.tetlet.2012.05.123 CrossRefGoogle Scholar
  24. 24.
    Van Der Puy M (2000). Process for the preparation of trifluoropropanal. US Pat 6111139Google Scholar
  25. 25.
    Patil VV, Gayakwad EM, Shankarling GS (2015) Highly efficient and stable peracid for rapid and selective oxidation of aliphatic amines to oximes. New J Chem 39:6677–6682.  https://doi.org/10.1039/C5NJ00801H CrossRefGoogle Scholar
  26. 26.
    Minakata S, Okumura S, Nagamachi T, Takeda Y (2011) Generation of nitrile oxides from oximes using t-BuOI and their cycloaddition. Org Lett 13:2966–2969.  https://doi.org/10.1021/ol2010616 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zeng ZG, Luo YP (2011) Process improvement on the synthesis of ethyl 2-aminoquinoline-3-carboxylate. Fine Chem Intermediat 41:24–26 (in Chinese) Google Scholar
  28. 28.
    Sun RF, Li YQ, Xiong LX, Wang QM (2011) Design, synthesis, and insecticidal evaluation of new benzoylureas containing isoxazoline and isoxazole group. J Agric Food Chem 59:4851–4859.  https://doi.org/10.1021/jf200395g CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang KL, Su B, Wang ZW, Wu M, Li Z, Hu YN, Fan ZJ, Mi N, Wang QM (2010) Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. J Agric Food Chem 58:2703–2709.  https://doi.org/10.1021/jf902543r CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chávez-Calvillo G, Contreras-Paredes CA, Mora-Macias J, Noa-Carrazana JC, Serrano-Rubio AA, Dinkova TD, Carrillo-Tripp M, Silva-Rosales L (2016) Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology 489:179–191.  https://doi.org/10.1016/j.virol.2015.11.026 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nakamura K, Akiyama H, Takahashi Y, Takahashi T, Noguchi A, Ohmori K, Kasahara M, Kitta K, Nakazawa H, Kondo K, Teshima R (2013) Application of a qualitative and quantitative real-time polymerase chain reaction method for detecting genetically modified papaya line 55-1 in papaya products. Food Chem 136:895–901.  https://doi.org/10.1016/j.foodchem.2012.08.088 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Zhi-Gang Zeng
    • 1
    • 2
  • Niu Liu
    • 1
  • Fei Lin
    • 1
  • Xun-Yuan Jiang
    • 1
  • Han-Hong Xu
    • 1
  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of EducationSouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.School of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningPeople’s Republic of China

Personalised recommendations