Advertisement

Molecular Diversity

, Volume 22, Issue 4, pp 815–825 | Cite as

New 7-piperazinylquinolones containing (benzo[d]imidazol-2-yl)methyl moiety as potent antibacterial agents

  • Hojat-Allah Arab
  • Mohammad Ali Faramarzi
  • Nasrin Samadi
  • Hamid Irannejad
  • Alireza Foroumadi
  • Saeed Emami
Original Article

Abstract

A series of 7-piperazinylquinolones containing a (benzo[d]imidazol-2-yl)methyl moiety were designed and synthesized as new antibacterial agents. The antibacterial activity of title compounds was evaluated against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia) microorganisms. Among the tested compounds, the N1-cyclopropyl derivative 4a showed the highest activity against S. aureus, S. epidermidis, B. subtilis and E. coli (\(\text {MIC} = 0.097\) \(\upmu \)g/mL), being 2–4 times more potent than reference drug norfloxacin. A structure-activity relationship study demonstrated that the effect of the nitro group on the benzimidazole ring depends on the pattern of substitutions on the piperazinylquinolone.

Keywords

Antibacterial activity 1H-benzo[d]imidazole 7-piperazinylquinolones Docking study 

Notes

Acknowledgements

This work was supported by a Grant (No. 833) from the Research Council of Mazandaran University of Medical Sciences, Sari, Iran.

Supplementary material

11030_2018_9834_MOESM1_ESM.docx (4 mb)
Supplementary material 1 (docx 4061 KB)

References

  1. 1.
    Castro W, Navarro M, Biot C (2013) Medicinal potential of ciprofloxacin and its derivatives. Future Med Chem 5:81–96.  https://doi.org/10.4155/fmc.12.181 CrossRefPubMedGoogle Scholar
  2. 2.
    Willmott CJ, Critchlow SE, Eperon IC, Maxwell A (1994) The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. J Mol Biol 242:351–363.  https://doi.org/10.1006/jmbi.1994.1586 CrossRefPubMedGoogle Scholar
  3. 3.
    Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392PubMedPubMedCentralGoogle Scholar
  4. 4.
    Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218.  https://doi.org/10.1146/annurev.pa.34.040194.001203 CrossRefPubMedGoogle Scholar
  5. 5.
    Gootz TD, Barrett JF, Sutcliffe JA (1990) Inhibitory effects of quinolone antibacterial agents on eucaryotic topoisomerases and related test systems. Antimicrob Agents Chemother 34:8–12.  https://doi.org/10.1128/AAC.34.1.8 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Emami S, Shafiee A, Foroumadi A (2005) Quinolones: recent structural and clinical developments. Iran J Pharm Res 3:123–136Google Scholar
  7. 7.
    Koga H, Itoh A, Murayama S, Suzue S, Irikura T (1980) Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem 23:1358–1363.  https://doi.org/10.1021/jm00186a014 CrossRefPubMedGoogle Scholar
  8. 8.
    Emami S, Shafiee A, Foroumadi A (2006) Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini-Rev Med Chem 6:375–386.  https://doi.org/10.2174/138955706776361493 CrossRefPubMedGoogle Scholar
  9. 9.
    Piddock LJV (1999) Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs 58:11–18.  https://doi.org/10.2165/00003495-199958002-00003 CrossRefPubMedGoogle Scholar
  10. 10.
    Appelbaum PC, Hunter PA (2000) The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 16:5–15.  https://doi.org/10.1016/S0924-8579(00)00192-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Emami S (2010) New quinolones with potential anti-MRSA activity. Nova Science Publishers Inc, New YorkGoogle Scholar
  12. 12.
    Nakaminami H, Sato-Nakaminami K, Noguchi N (2014) A novel GyrB mutation in meticillin-resistant Staphylococcus aureus (MRSA) confers a high level of resistance to third-generation quinolones. Int J Antimicrob Agents 43:478–479.  https://doi.org/10.1016/j.ijantimicag.2014.02.002 CrossRefPubMedGoogle Scholar
  13. 13.
    Wagman AS, Wentland MP (2007) Quinolone antibacterial agents. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II, vol 7. Elsevier LTD, Oxford, pp 567–596CrossRefGoogle Scholar
  14. 14.
    Seenaiah D, Reddy PR, Reddy GM, Padmaja A, Padmavathi V, Krishna NS (2014) Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole. Eur J Med Chem 77:1–7.  https://doi.org/10.1016/j.ejmech.2014.02.050 CrossRefPubMedGoogle Scholar
  15. 15.
    Hosamani KM, Seetharamareddy HR, Keri RS, Hanamanthagouda MS, Moloney MG (2009) Microwave assisted, one-pot synthesis of 5-nitro- 2-aryl substituted-1H-benzimidazole libraries: screening in vitro for antimicrobial activity. J Enzyme Inhib Med Chem 24:1095–1100.  https://doi.org/10.1080/14756360802632716 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang HZ, Damu GL, Cai GX, Zhou CH (2013) Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur J Med Chem 64:329–344.  https://doi.org/10.1016/j.ejmech.2013.03.049 CrossRefPubMedGoogle Scholar
  17. 17.
    Foroumadi A, Emami S, Hassanzadeh A, Rajaee M, Sokhanvar K, Moshafi MH, Shafiee A (2005) Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives. Bioorg Med Chem Lett 15:4488–4492.  https://doi.org/10.1016/j.bmcl.2005.07.016 CrossRefPubMedGoogle Scholar
  18. 18.
    Foroumadi A, Firoozpour L, Emami S, Mansouri S, Ebrahimabadi AH, Asadipour A, Amini M, Saeid-Adeli N, Shafiee A (2007) Synthesis and antibacterial activity of N-[5-(chlorobenzylthio)-1,3,4-thiadiazol-2-yl] piperazinyl quinolone derivatives. Arch Pharm Res 30:138–145.  https://doi.org/10.1007/BF02977685 CrossRefPubMedGoogle Scholar
  19. 19.
    Foroumadi A, Firoozpour L, Nematollahi N, Ebrahimabadi AH, Emami S, Moshafi MH, Asadipour A, Shafiee A (2007) Synthesis of new fluoroquinolones containing a N-[5-(fluorobenzylthio)-1,3,4-thiadiazol-2-yl]piperazine moiety. Asian J Chem 19:4547–4552Google Scholar
  20. 20.
    Foroumadi A, Emami S, Mehni M, Moshafi MH, Shafiee A (2005) Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2–5-bromothiophen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorg Med Chem Lett 15:4536–4539.  https://doi.org/10.1016/j.bmcl.2005.07.005 CrossRefPubMedGoogle Scholar
  21. 21.
    Foroumadi A, Oboudiat M, Emami S, Karimollah A, Saghaee L, Moshafi MH, Shafiee A (2006) Synthesis and antibacterial activity of N-[2-[5-(methylthio)thiophen-2-yl]-2-oxoethyl] and N-[2-[5-(methylthio)thiophen-2-yl]-2-(oxyimino)ethyl]piperazinylquinolone derivatives. Bioorg Med Chem 14:3421–3427.  https://doi.org/10.1016/j.bmc.2005.12.058 CrossRefPubMedGoogle Scholar
  22. 22.
    Letafat B, Emami S, Mohammadhosseini N, Faramarzi MA, Samadi N, Shafiee A, Foroumadi A (2007) Synthesis and antibacterial activity of new N-[2-(thiophen-3-yl)ethyl] piperazinyl quinolones. Chem Pharm Bull (Tokyo) 55:894–898.  https://doi.org/10.1248/cpb.55.894 CrossRefGoogle Scholar
  23. 23.
    Mohammadhosseini N, Alipanahi Z, Alipour E, Emami S, Faramarzi MA, Samadi N, Khoshnevis N, Shafiee A, Foroumadi A (2012) Synthesis and antibacterial activity of novel levofloxacin derivatives containing a substituted thienylethyl moiety. Daru J Pharm Sci 20:16;  https://doi.org/10.1186/2008-2231-20-16 CrossRefGoogle Scholar
  24. 24.
    Shafiee A, Haddad Zahmatkesh M, Mohammadhosseini N, Khalafy J, Emami S, Moshafi MH, Sorkhi M, Foroumadi A (2008) Synthesis and in-vitro antibacterial activity of N-piperazinyl quinolone derivatives with 5-chloro-2-thienyl group. Daru 16:189–195Google Scholar
  25. 25.
    Foroumadi A, Mohammadhosseini N, Emami S, Letafat B, Faramarzi MA, Samadi N, Shafiee A (2007) Synthesis and antibacterial activity of new 7-piperazinyl-quinolones containing a functionalized 2-(furan-3-yl)ethyl moiety. Arch Pharm 340:47–52.  https://doi.org/10.1002/ardp.200600169 CrossRefGoogle Scholar
  26. 26.
    Emami S, Foroumadi A, Faramarzi MA, Samadi N (2008) Synthesis and antibacterial activity of quinolone-based compounds containing a coumarin moiety. Arch Pharm 341:42–48.  https://doi.org/10.1002/ardp.200700090 CrossRefGoogle Scholar
  27. 27.
    Emami S, Foroumadi A, Samadi N, Faramarzi MA, Rajabalian S (2009) Conformationally constrained analogs of N-substituted piperazinylquinolones: synthesis and antibacterial activity of N-(2,3-dihydro-4-hydroxyimino-4H-1-benzopyran-3-yl)-piperazinylquinolones. Arch Pharm 342:405–411.  https://doi.org/10.1002/ardp.200800182 CrossRefGoogle Scholar
  28. 28.
    Emami S, Ghafouri E, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A (2013) Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem 68:185–191.  https://doi.org/10.1016/j.ejmech.2013.07.032 CrossRefPubMedGoogle Scholar
  29. 29.
    Baron EJ, Finegold SM (2002) Bailey Scott’s diagnostic microbiology, 11th edn. The C. V. Mosby Company, St. Louis, pp 235–236Google Scholar
  30. 30.
    Li Q, Xing J, Cheng H, Wang H, Wang J, Wang S, Zhou J, Zhang H (2015) Design, synthesis, antibacterial evaluation and docking study of novel 2-hydroxy-3-(nitroimidazolyl)-propyl-derived quinolone. Chem Biol Drug Des 85:79–90.  https://doi.org/10.1111/cbdd.12395 CrossRefPubMedGoogle Scholar
  31. 31.
    Sheng C, Che X, Wang W, Wang S, Cao Y, Yao J, Miao Z, Zhang W (2011) Design and synthesis of antifungal benzoheterocyclic derivatives by scaffold hopping. Eur J Med Chem 46:1706–1712.  https://doi.org/10.1016/j.ejmech.2011.01.075 CrossRefPubMedGoogle Scholar
  32. 32.
    Foroumadi A, Ashraf-Askari R, Moshafi MH, Emami S, Zeynali A (2003) Synthesis and in vitro antibacterial activity of N-[5-(5-nitro-2-furyl)-1,3,4-thiadiazole-2-yl] piperazinyl quinolone derivatives. Pharmazie 58:432–433PubMedGoogle Scholar
  33. 33.
    Foroumadi A, Mansouri S, Emami S, Mirzaei J, Sorkhi M, Saeid-Adeli N, Shafiee A (2006) Synthesis and antibacterial activity of nitroaryl thiadiazole-levofloxacin hybrids. Arch Pharm 339:621–624.  https://doi.org/10.1002/ardp.200600108 CrossRefGoogle Scholar
  34. 34.
    Jazayeri S, Moshafi MH, Firoozpour L, Emami S, Rajabalian S, Haddad M, Pahlavanzadeh F, Esnaashari M, Shafiee A, Foroumadi A (2009) Synthesis and antibacterial activity of nitroaryl thiadiazole-gatifloxacin hybrids. Eur J Med Chem 44:1205–1209.  https://doi.org/10.1016/j.ejmech.2008.09.012 CrossRefPubMedGoogle Scholar
  35. 35.
    Emami S, Shahrokhirad N, Foroumadi A, Faramarzi MA, Samadi N, Soltani-Ghofrani N (2013) 7-Piperazinylquinolones with methylene-bridged nitrofuran scaffold as new antibacterial agents. Med Chem Res 22:5940–5947.  https://doi.org/10.1007/s00044-013-0581-9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Student Research Committee, Faculty of PharmacyMazandaran University of Medical SciencesSariIran
  2. 2.Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research CenterTehran University of Medical SciencesTehranIran
  3. 3.Department of Drug and Food Control, Faculty of PharmacyTehran University of Medical SciencesTehranIran
  4. 4.Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of PharmacyMazandaran University of Medical SciencesSariIran
  5. 5.Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS)Tehran University of Medical SciencesTehranIran

Personalised recommendations