Advertisement

Molecular Diversity

, Volume 22, Issue 4, pp 803–814 | Cite as

Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents

  • Yerrabelly Jayaprakash Rao
  • Thummala Sowjanya
  • Gogula Thirupathi
  • Nandula Yadagiri Sreenivasa Murthy
  • Sudha Sravanti Kotapalli
Original Article

Abstract

A series of new flavone/isoxazole fused heterocycles 5a–f and flavone/1,2,3-triazole/benzimidazole hybrid heterocycles compounds 7a–t were synthesized via an intramolecular cyclization and Cu(I)-catalyzed click 1,3-dipolar cycloaddition. The products were evaluated for their antiproliferative activity against human breast cancer cell line (MCF-7) using sulforhodamine B assay (SRB) and antimycobacterial activity using turbidometric assay. The majority of the tested compounds exhibited antiproliferative activity and antimycobacterial activity. Compounds 7l, 7q and 7r showed moderate antiproliferative activity with IC50 values 17.9, 14.2, 19.1 \(\upmu \hbox {M}\), respectively, and compound 5a showed moderate antimycobacterial activity with 41.7% of inhibition at 30 \(\upmu \hbox {M}\) concentration.

Graphical Abstract

Keywords

8-Formyl-7-hydroxy flavones Click chemistry 1, 2, 3-Triazole Antimycobacterial activity Antiproliferative activity Cycloaddition 

Notes

Acknowledgements

The authors are thankful to Vetindia pharmaceuticals Ltd, Leavo chem. Laboratories for providing laboratory facilities to carry out this work.

Supplementary material

11030_2018_9833_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (docx 1568 KB)

References

  1. 1.
    Serra H, Mendes T, Bronze MR, Simplício AL (2008) Prediction of intestinal absorption and metabolism of pharmacologically active flavones and flavanones. Bioorg Med Chem 16:4009–4018.  https://doi.org/10.1016/j.bmc.2008.01.028 CrossRefPubMedGoogle Scholar
  2. 2.
    Yao H, Kim SH, Lee J, Kim HJ, Seo SH, Chung BY, Jin C, Lee YS (2005) Synthesis and antioxidantactivity of 3-methoxyflavones. Korean Chem Soc 26:2057–2060.  https://doi.org/10.5012/bkcs.2005.26.12.205 CrossRefGoogle Scholar
  3. 3.
    Balasuriya N, Vasantha Rupasinghe HP (2012) Antihypertensive properties of flavonoidrich apple peel extract. Food Chem 135:2320–2325.  https://doi.org/10.1016/j.foodchem.2012.07.023 CrossRefPubMedGoogle Scholar
  4. 4.
    Kawai M, Hirano T, Higa S, Arimitsu J, Maruta M, Kuwahara Y, Ohkawara T, Hagihara K, Yamadori T, Shima Y, Ogata A, Kawase I, Tanaka T (2007) Flavonoids and related compounds as anti-allergic substances. Allergol Int 56:113–123.  https://doi.org/10.2332/allergolint.R-06-135 CrossRefPubMedGoogle Scholar
  5. 5.
    Orhan DD, Ozçelik B, Ozgen S, Ergun F (2010) Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbial Res 165:496–504.  https://doi.org/10.1016/j.micres.2009.09.002 CrossRefGoogle Scholar
  6. 6.
    Li JX, Xub B, Chai Q, Liu ZX, Zhao AP, Chan LB (2005) Antihypertansive effect of total flavonoid fraction of Astragalus complanatus in hypertensive rats. Chin J Physiol 48:101–106PubMedGoogle Scholar
  7. 7.
    Inoue T, Sugimoto Y, Masuda H, Kamei C (2002) Antiallergic effect of flavonoid glycosides obtained from Mentha piperita L. Biol Pharm Bull 25:256–259CrossRefGoogle Scholar
  8. 8.
    Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmcol Ther 96:67–202.  https://doi.org/10.1016/S0163-7258(02)00298-X CrossRefGoogle Scholar
  9. 9.
    Zhu Z-Y, Wang W-X, Wang Z-Q, Chen L-J, Zhang J-Y, Liu X, Shao-ping W, Zhang Y (2014) Synthesis and antitumor activity evaluation of chrysin derivatives. Eur J Med Chem 75:297–300.  https://doi.org/10.1016/j.ejmech.2013.12.044 CrossRefPubMedGoogle Scholar
  10. 10.
    Cotelle N, Jl B, Catteau JP, Pommery J, Wallet JC, Gaydou EM (1996) Antioxidant properties of hydroxy-flavones. Free Radical Bio Med 20:35–43CrossRefGoogle Scholar
  11. 11.
    Manjinder S, Maninder KS (2014) Flavones: an important scaffold for medicinal chemistry. Eur J Med Chem 84:206–239.  https://doi.org/10.1016/j.ejmech.2014.07.013 CrossRefGoogle Scholar
  12. 12.
    Maheep K, Sharma N, Mahabeer PD, Yogesh CJ (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Rev 5:1–12.  https://doi.org/10.4103/0973-7847.79093 CrossRefGoogle Scholar
  13. 13.
    Garudachari B, Isloor AM, Satyanarayana MN, Fun HK, Hegde G (2014) Click chemistry approach: tegioselective one-pot synthesis of some new 8-trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur J Med Chem 74:324–332.  https://doi.org/10.1016/j.ejmech.2014.01.008 CrossRefPubMedGoogle Scholar
  14. 14.
    Bakunov SA, Bakunova SM, Wenzler T, Ghebru M, Werbovetz KA, Brun R, Tidwell RR (2010) Synthesis and antiprotozoal activity of cationic 1,4-diphenyl-1H-1,2,3-triazoles. J Med Chem 53:254–272.  https://doi.org/10.1021/jm901178d CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wuest F, Tang X, Kniess T, Pietzsch J, Suresh M (2009) Synthesis and cyclooxygenase inhibition of various (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives. Bioorg Med Chem 17:1146–1151.  https://doi.org/10.1016/j.bmc.2008.12.032 CrossRefPubMedGoogle Scholar
  16. 16.
    Somu RV, Boshoff H, Qiao C, Bennett EM, Barry CE, Aldrich CC (2006) Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 49:31–34.  https://doi.org/10.1021/jm051060o CrossRefPubMedGoogle Scholar
  17. 17.
    Wang XL, Wan K, Zhou CH (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 45:4631–4639.  https://doi.org/10.1016/j.ejmech.2010.07.031 CrossRefPubMedGoogle Scholar
  18. 18.
    Kamal A, Prabhakar S, Ramaiah MJ, Reddy PV, Reddy CR, Mallareddy A, Shankaraiah N, Narayan Reddy TL, Pushpavalli SNGVL, Bhadra M (2011) Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur J Med Chem 46:3820–3831.  https://doi.org/10.1016/j.ejmech.2011.05.050 CrossRefPubMedGoogle Scholar
  19. 19.
    Chan DCM, Laughton CA, Queener SF, Stevens MFG (2002) Structural studies on bioactive compounds. Part 36: design, synthesis and biological evaluation of pyrimethamine-based antifolates against PneumoCystis carinii. Bioorg Med Chem 10:3001–3010.  https://doi.org/10.1016/S0968-0896(02)00128-1 CrossRefPubMedGoogle Scholar
  20. 20.
    Jordao AK, Afonso PP, Ferreira VF, De Souza MC, Almeida MC, Beltrame CO, Paiva DP, Wardell SM, Wardell JL, Tiekink ER, Damaso CR, Cunha AC (2009) Antiviral evaluation of N-amino-1,2,3-triazoles against Cantagalo virus replication in cell culture. Eur J Med Chem 44:3777–3783.  https://doi.org/10.1016/j.ejmech.2009.04.046 CrossRefPubMedGoogle Scholar
  21. 21.
    Kumar R, ShaharYar M, Chaturvedi S, Srivastava A (2013) Triazole as pharmaceuticals potentials. Int J Pharm Tech Res 5:1844–1869Google Scholar
  22. 22.
    Naseem A, Naveen Kumar K, Sarfaraz A, Mohammad O (2014) Design, synthesis and antiproliferative activity of functionalized flavone-triazole-tetrahydropyran conjugates against human cancer cell lines. Eur J Med Chem 82:552–564.  https://doi.org/10.1016/j.ejmech.2014.06.009 CrossRefGoogle Scholar
  23. 23.
    Khokra SL, Choudhary D (2011) Benzimidazole an important scaffold in drug discovery. Asian J Bio Chem Pharm Res 1:476–480Google Scholar
  24. 24.
    Gurvinder S, Maninderjit K, Mohan C (2013) Benzimidazoles. The latest information on biological activities. Int Res J Pharm 4:82–87Google Scholar
  25. 25.
    Ajay Kumar K, Jayaroopa P (2013) Isoxazoles: molecules with potential medicinal properties. Int J Pharm Chem Biol Sci 3:294–304Google Scholar
  26. 26.
    Vorobyeva DV, Natalya M, Karimova IL, Odinets G-VR, Osipov SN (2011) Click-chemistry approach to isoxazole-containing \(\alpha \)-\(\text{ CF }_{3}\)-substituted \(\alpha \)-amino carboxylates and \(\alpha \)-aminophosphonates. Org Biomol Chem 9:7335–7342.  https://doi.org/10.1039/C1OB06040F CrossRefPubMedGoogle Scholar
  27. 27.
    Angelika S, Bożena OM (2017) Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur J Med Chem 137:292–309.  https://doi.org/10.1016/j.ejmech.2017.06.002 CrossRefGoogle Scholar
  28. 28.
    Thirupathi G, JayaprakashRao Y (2016) Synthesis of diverse oxa-carbocycle annulated flavones using the combined Claisen rearrangement and ring-closing metathesis. Helv Chim Acta 99:547–557.  https://doi.org/10.1002/hlca.201600028 CrossRefGoogle Scholar
  29. 29.
    Thirupathi G, Yadaiahgoud E, Hemasri Y, JayaprakashRao Y (2017) A tandem synthesis of 3-aroylcoumarinoflavones catalyzed by L-proline and their antioxidant activity. J Iran Chem Soc 14:477–483.  https://doi.org/10.1007/s13738-016-0995-7 CrossRefGoogle Scholar
  30. 30.
    Lee YR, Morehand AT Jr (1995) A new route for the synthesis of furanoflavone and furanochalcone natural products. Tetrahedron 51:4909–4922.  https://doi.org/10.1016/0040-4020(95)98689-F CrossRefGoogle Scholar
  31. 31.
    Tsueneo S, Takaaki H, Takahachi S, Teishiro A (1983) Benzofuran derivatives. I. On the effects of substituents in benzofuran syntheses. Bull Chem Soc Jpn 56:2762–2767.  https://doi.org/10.1246/bcsj.56.2762 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yerrabelly Jayaprakash Rao
    • 1
  • Thummala Sowjanya
    • 2
  • Gogula Thirupathi
    • 1
  • Nandula Yadagiri Sreenivasa Murthy
    • 3
  • Sudha Sravanti Kotapalli
    • 4
  1. 1.Department of Chemistry, University College of Science, SaifabadOsmania UniversityHyderabadIndia
  2. 2.Department of ChemistryJawaharlal Nehru Technological UniversityHyderabadIndia
  3. 3.Department of ChemistryPalamuru UniversityMahabubnagarIndia
  4. 4.Centre for Chemical BiologyIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations