Advertisement

Molecular Diversity

, Volume 22, Issue 4, pp 863–878 | Cite as

Highly efficient synthesis of alkyl and aryl primary thiocarbamates and dithiocarbamates under metal- and solvent-free conditions

  • Ali Reza Sardarian
  • Iman Dindarloo Inaloo
  • Ali Reza Modarresi-Alam
Original Article
  • 74 Downloads

Abstract

A highly efficient, metal-free and solvent-free process is reported for the preparation of novel series of alkyl and aryl primary thiocarbamates and dithiocarbamates through the reaction of aliphatic alcohols, phenols and thiols with thiocyanate salts in the presence of 4-dodecylbenzenesulfonic acid (DBSA) as an inexpensive, readily available and amphipathic acid reagent. All reactions proceeded smoothly, and the products are obtained in good to excellent yields. Using this method, a wide range of structurally diverse primary thiocarbamates was prepared successfully.

Graphical Abstract

Keywords

4-Dodecylbenzenesulfonic acid Potassium thiocyanate Solvent-free Primary thiocarbamates Primary dithiocarbamates Metal-free 

Notes

Acknowledgements

Authors gratefully acknowledge the financial support of this work by the Research Council of Shiraz University.

Supplementary material

11030_2018_9831_MOESM1_ESM.pdf (14.3 mb)
Supplementary material 1 (pdf 14594 KB)

References

  1. 1.
    Walter W, Bode KD (1967) Syntheses of thiocarbamates. Angew Chem Int Ed 6:281–293.  https://doi.org/10.1002/anie.196702811 CrossRefGoogle Scholar
  2. 2.
    Spallarossa A, Cesarini S, Schenone S, Ranise A (2009) Parallel synthesis of O-phenoxyethyl and O-adamantyl N-acyl thiocarbamates endowed with antiproliferative activity. Arch Pharm 342:344–352.  https://doi.org/10.1002/ardp.200800212 CrossRefGoogle Scholar
  3. 3.
    Rodis NP, Digenis GA (2001) Synthesis and in-vitro evaluation of novel low molecular weight thiocarbamates as inhibitors of human leukocyte elastase. J Enzyme Inhib 16:95–105.  https://doi.org/10.1080/14756360109162359 CrossRefPubMedGoogle Scholar
  4. 4.
    Ramazonov NS, Syrov VN (2006) Synthesis of cyasteronylthiocarbamate derivatives. Chem Nat Compd 42:558–561.  https://doi.org/10.1007/s10600-006-0213-4 CrossRefGoogle Scholar
  5. 5.
    Cesarini S, Spallarossa A, Ranise A, Fossa P, La Colla P, Sanna G, Collu G, Loddo R (2008) Thiocarbamates as non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 1: parallel synthesis, molecular modelling and structure-activity relationship studies on O-[2-(hetero) arylethyl]-N-phenylthiocarbamates. Bioorg Med Chem 16:4160–4172.  https://doi.org/10.1016/j.bmc.2007.12.050 CrossRefPubMedGoogle Scholar
  6. 6.
    Crich D, Quintero L (1989) Radical chemistry associated with the thiocarbonyl group. Chem Rev 89:1413–1429.  https://doi.org/10.1021/cr00097a001 CrossRefGoogle Scholar
  7. 7.
    Zard SZ (1997) On the trail of xanthates: some new chemistry from an old functional group. Angew Chem Int Ed 36:672–685.  https://doi.org/10.1002/anie.199706721 CrossRefGoogle Scholar
  8. 8.
    Raghuvanshi RS (2015) A mild, efficient, and fast synthesis of methyl N-aryldithiocarbamates using superoxide ion at room temperature. Phosphorus Sulfur Silicon Relat Elem 190:133–137.  https://doi.org/10.1080/10426507.2014.919292 CrossRefGoogle Scholar
  9. 9.
    Carta F, Aggarwal M, Maresca A, Scozzafava A, McKenna R, Masini E, Supuran CT (2012) Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem 55:1721–1730.  https://doi.org/10.1021/jm300031j CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bahrin LG, Hopf H, Jones PG, Sarbu LG, Babii C, Mihai AC, Stefan M, Birsa LM (2016) Antibacterial structure-activity relationship studies of several tricyclic sulfur-containing flavonoids. Beilstein J Org Chem 12:1065–1071.  https://doi.org/10.3762/bjoc.12.100 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rafin C, Veignie E, Sancholle M, Postel D, Len C, Villa P, Ronco G (2000) Synthesis and antifungal activity of novel bisdithiocarbamate derivatives of carbohydrates against fusarium oxysporum f. sp. lini. J Agric Food Chem 48:5283–5287.  https://doi.org/10.1021/jf0003698 CrossRefPubMedGoogle Scholar
  12. 12.
    Grainger RS, Welsh EJ (2007) Formal synthesis of (-)-aphanorphine using sequential photomediated radical reactions of dithiocarbamates. Angew Chem 119:5473–5476.  https://doi.org/10.1002/ange.200701055 CrossRefGoogle Scholar
  13. 13.
    Tsuboi S, Takeda S, Yamasaki Y, Sakai T, Utaka M, Ishida S, Yamada E, Hirano J (1992) A convenient synthesis of platelet-activating factors and their analogues from chiral epichlorohydrin. Chem Lett 21:1417–1420.  https://doi.org/10.1246/cl.1992.1417 CrossRefGoogle Scholar
  14. 14.
    Katritzky AR, Singh S, Mohapatra PP, Clemens N, Kirichenko K, Molina P (2005) Synthesis of functionalized dithiocarbamates via N-(1-benzotriazolylalkyl) dithiocarbamates. Arkivoc 9:63–79Google Scholar
  15. 15.
    Chauhan R, Trivedi M, Yadav R, Kumar A, Amalnerkar DP, Gosavi SW (2015) Synthesis, characterization and light harvesting properties of Sb (III) and Bi (III) ferrocenyl dithiocarbamate complexes. Spectrochim Acta Mol Biomol Spectrosc 150:652–656.  https://doi.org/10.1016/j.saa.2015.06.012 CrossRefGoogle Scholar
  16. 16.
    Trivedi M, Nagarajan R, Kumar A, Singh NK, Rath NP (2011) Synthesis, structure, catalytic and calculated non-linear optical properties of cis-and trans-, mer-chlorobis (triphenyl phosphine/triphenyl arsine)-dipicolinato ruthenium III complexes. J Mol Struct 994:29–38.  https://doi.org/10.1016/j.molstruc.2011.02.044 CrossRefGoogle Scholar
  17. 17.
    Jing X, Liu F, Yang X, Ling P, Li L, Long C, Li A (2009) Adsorption performances and mechanisms of the newly synthesized N, N\(\prime \)-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. J Hazard Mater 167:589–596.  https://doi.org/10.1016/j.jhazmat.2009.01.020 CrossRefPubMedGoogle Scholar
  18. 18.
    Bai L, Hu H, Fu W, Wan J, Cheng X, Zhuge L, Xiong L, Chen Q (2009) Synthesis of a novel silica-supported dithiocarbamate adsorbent and its properties for the removal of heavy metal ions. J Hazard Mater 195:261–275.  https://doi.org/10.1016/j.jhazmat.2011.08.038 CrossRefGoogle Scholar
  19. 19.
    Wuts PG, Greene TW (2006) Greene’s protective groups in organic synthesis. Wiley, HobokenCrossRefGoogle Scholar
  20. 20.
    Alam MN, Mandal SK, Debnath SC (2012) Effect of zinc dithiocarbamates and thiazole-based accelerators on the vulcanization of natural rubber. Rubber Chem Technol 85:120–131.  https://doi.org/10.5254/1.3672434 CrossRefGoogle Scholar
  21. 21.
    Singh V, Kumar V, Gupta AN, Drew MG, Singh N (2014) Effect of pyridyl substituents leading to the formation of green luminescent mercury (II) coordination polymers, zinc (II) dimers and a monomer. New J Chem 38:3737–3748.  https://doi.org/10.1039/C4NJ00435C CrossRefGoogle Scholar
  22. 22.
    Weber WP, Gokel GW, Ugi IK (1972) Phasenübergangs-Katalyse bei der Hofmannschen Carbylamin–Reaktion. Angew Chem 84:587–587.  https://doi.org/10.1002/ange.19720841211 CrossRefGoogle Scholar
  23. 23.
    Walter W, Bode KD (1966) Über die Oxydationsprodukte von Thiocarbonsäureamiden, XV. Oxydation von Thiocarbamidsäure-O-arylestern zu ortho-substituierten Aryloxy-iminomethansulfensäuren. Eur J Org Chem 698:122–130.  https://doi.org/10.1002/jlac.19666980114 CrossRefGoogle Scholar
  24. 24.
    Grzyb JA, Shen M, Yoshina-Ishii C, Chi W, Brown RS, Batey RA (2005) Carbamoylimidazolium and thiocarbamoylimidazolium salts: novel reagents for the synthesis of ureas, thioureas, carbamates, thiocarbamates and amides. Tetrahedron 61:7153–7175.  https://doi.org/10.1016/j.tet.2005.05.056 CrossRefGoogle Scholar
  25. 25.
    Villemin D, Hachemi M, Lalaoui M (1996) Potassium fluoride on alumina: synthesis of O-aryl N, N-dimethylthiocarbamates and their rearrangement into S-aryl N, N-dimethyl-thiocarbamates under microwave irradiation. Synth Commun 26:2461–2471.  https://doi.org/10.1080/00397919608004558 CrossRefGoogle Scholar
  26. 26.
    Lee AW, Chan WH, Wong HC, Wong MS (1989) One pot phase transfer synthesis of O-alkyl, S-methyl dithiocarbonates (xanthates). Synth Commun 19:547–552.  https://doi.org/10.1080/00397918908050698 CrossRefGoogle Scholar
  27. 27.
    Bararjanian M, Balalaie S, Rominger F, Movassagh B, Bijanzadeh HR (2011) Novel and efficient one-pot five-and six-component reactions for the stereoselective synthesis of highly functionalized enaminones and dithiocarbamates. Mol Divers 15:583–594.  https://doi.org/10.1007/s11030-010-9286-x CrossRefPubMedGoogle Scholar
  28. 28.
    Wood MR, Duncalf DJ, Rannard SP, Perrier S (2006) Selective one-pot synthesis of trithiocarbonates, xanthates, and dithiocarbamates for use in RAFT/MADIX living radical polymerizations. Org Lett 8:553–556.  https://doi.org/10.1021/ol0525617 CrossRefPubMedGoogle Scholar
  29. 29.
    Bhadra S, Saha A, Ranu BC (2008) One-pot copper nanoparticle-catalyzed synthesis of S-aryl-and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates. Green Chem 10:1224–1230.  https://doi.org/10.1039/B809200A CrossRefGoogle Scholar
  30. 30.
    Azizi N, Aryanasab F, Tourkian L, Saidi MR (2010) Versatile and Large-Scale Synthesis of Functional Dithiocarbamates in Water. Synth Commun 41:94–99.  https://doi.org/10.1080/00397910903531847 CrossRefGoogle Scholar
  31. 31.
    Halimehjani AZ, Marjani K, Ashouri A (2010) Synthesis of dithiocarbamate by Markovnikov addition reaction in aqueous medium. Green Chem 12:1306–1310.  https://doi.org/10.1039/C004711B CrossRefGoogle Scholar
  32. 32.
    Chaturvedi D, Ray S (2006) An efficient, one-pot, synthesis of dithiocarbamates from the corresponding alcohols using Mitsunobu’s reagent. Tetrahedron Lett 47:1307–1309.  https://doi.org/10.1016/j.tetlet.2005.12.079 CrossRefGoogle Scholar
  33. 33.
    Liu Y, Bao W (2007) A new method for the synthesis of dithiocarbamates by CuI-catalyzed coupling reaction. Tetrahedron Lett 48:4785–4788.  https://doi.org/10.1016/j.tetlet.2007.03.168 CrossRefGoogle Scholar
  34. 34.
    Ranu BC, Saha A, Banerjee S (2008) Catalysis by Ionic Liquids: Significant Rate Acceleration with the Use of [pmIm] Br in the Three-Component Synthesis of Dithiocarbamates. Eur J Org Chem 2008:519–523.  https://doi.org/10.1002/ejoc.200700842 CrossRefGoogle Scholar
  35. 35.
    Sureshkumar D, Koutha SM, Chandrasekaran S (2005) Chemistry of tetrathiomolybdate: aziridine ring opening reactions and facile synthesis of interesting sulfur heterocycles. J Am Chem Soc 127:12760–12761.  https://doi.org/10.1021/ja052969z CrossRefPubMedGoogle Scholar
  36. 36.
    Stamm H (1999) Nucleophilic ring opening of aziridines. Adv Synth Catal 341:319–331. 10.1002/(SICI)1521-3897(199905)341:4\(<\)319::AID-PRAC319\(>\)3.0.CO;2-9CrossRefGoogle Scholar
  37. 37.
    Hu XE (2004) Nucleophilic ring opening of aziridines. Tetrahedron 60:2701–2743.  https://doi.org/10.1016/j.tet.2004.01.042 CrossRefGoogle Scholar
  38. 38.
    Modarresi-Alam AR, Inaloo ID, Kleinpeter E (2012) Synthesis of primary thiocarbamates by silica sulfuric acid as effective reagent under solid-state and solution conditions. J Mol Struct 1024:156–162.  https://doi.org/10.1016/j.molstruc.2012.05.033 CrossRefGoogle Scholar
  39. 39.
    Sardarian AR, Inaloo ID (2015) 4-Dodecylbenzenesulfonic acid (DBSA) promoted solvent-free diversity-oriented synthesis of primary carbamates, S-thiocarbamates and ureas. RSC Adv 5:76626–76641.  https://doi.org/10.1039/C5RA14528G CrossRefGoogle Scholar
  40. 40.
    Crowell TI, Hankins MG (1969) Hydrolysis of thiocyanic acid. I. Dependence of rate on acidity function. J Phys Chem 73:1380–1383.  https://doi.org/10.1021/j100725a035 CrossRefGoogle Scholar
  41. 41.
    Bowman WR, Burchell CJ, Kilian P, Slawin AM, Wormald P, Woollins JD (2006) Investigations on organo-sulfur-nitrogen rings and the thiocyanogen polymer(SCN) x. Chem Eur J 12:6366–6381.  https://doi.org/10.1002/chem.200501528 CrossRefPubMedGoogle Scholar
  42. 42.
    Cataldo F (1992) Possible structure of parathiocyanogen: an IR and UV study. Polyhedron 11:79–83.  https://doi.org/10.1016/S0277-5387(00)83263-5 CrossRefGoogle Scholar
  43. 43.
    Cataldo F, Fiordiponti P (1993) Possible structure of parathiocyanogen–II. electrochemical synthesis, \(^{13}\)C NMR and conductivity measurements on undoped and iodine doped samples. Polyhedron 12:279–284.  https://doi.org/10.1016/S0277-5387(00)81724-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ali Reza Sardarian
    • 1
  • Iman Dindarloo Inaloo
    • 1
  • Ali Reza Modarresi-Alam
    • 2
  1. 1.Chemistry Department, College of SciencesShiraz UniversityShirazIran
  2. 2.Chemistry Department, College of SciencesUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations