Advertisement

Molecular Diversity

, Volume 22, Issue 4, pp 769–778 | Cite as

Conventional and microwave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities

  • Dongamanti AshokEmail author
  • Srinivas Gundu
  • Vikas Kumar Aamate
  • Mohan Gandhi Devulapally
Original Article

Abstract

A new series of triheterocycles containing indole–benzimidazole-based 1,2,3-triazole hybrids have been synthesized in good yields via a microwave-assisted click reaction. All the compounds were characterized by IR, \(^{1}\hbox {H}\) NMR, \(^{13}\hbox {C}\) NMR and mass spectroscopy and were evaluated for their in vitro antitubercular activity against the Mycobacterium tuberculosis H37Rv strain. Compounds 4b, 4h and 4i displayed highly potent antitubercular activity with MIC 3.125–6.25 \(\upmu \hbox {g}/\hbox {mL}\). The antioxidant potential was evaluated using 2,2-diphenyl-1-picryl hydrazine and \(\hbox {H}_{2}\hbox {O}_{2}\) radical scavenging activity, and compounds 4e,4f and 4g showed excellent radical scavenging activity with \(\hbox {IC}_{50}\) values in the range of 08.50–10.05 \(\upmu \hbox {g}/\hbox {mL}\). Furthermore, the compounds were evaluated for antimicrobial activity against numerous bacterial and fungal strains, and compounds 4b, 4c and 4h were found to be the most promising potential antimicrobial molecules with MIC 3.125–6.25 \(\upmu \hbox {g}/\hbox {mL}\).

Keywords

Indole Benzimidazole 1, 2, 3-Triazole Click chemistry Microwave irradiation Antitubercular Antioxidant Antimicrobial 

Notes

Acknowledgements

The authors are thankful to the Head, Department of Chemistry, Osmania University, for providing laboratory facilities and CFRD, OU, for providing spectral analysis. Srinivas Gundu is thankful to the Council of Scientific and Industrial Research, New Delhi, for the award of the senior research fellowship.

Compliance with ethical standards

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Supplementary material

11030_2018_9828_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (docx 2559 KB)

References

  1. 1.
    World Health Organization (WHO), Global Tuberculosis Report 2016; Available at http://www.who.int/mediacentre/factsheets/fs104/en/; accessed on 12th Mar 2017
  2. 2.
    Bodiang CK (2000) Issues facing TB control (2.1). Tuberculosis control in refugee populations: a focus on developing countries. Scott Med J 45:25–28CrossRefGoogle Scholar
  3. 3.
    Long R (2000) Drug-resistant tuberculosis. Can Med Assoc J 163:425–428Google Scholar
  4. 4.
    Pozniak A (2000) HIV-associated tuberculosis in the era of HAART. Int J Tuberc Lung Dis 4:993–994PubMedGoogle Scholar
  5. 5.
    Cheng JH, Huang AM, Hour TC, Yang SC, Pu YS, Lin CN (2011) Antioxidant xanthone derivatives induce cell cycle arrest and apoptosis and enhance cell death induced by cisplatin in NTUB1 cells associated with ROS. Eur J Med Chem 46:1222–1231.  https://doi.org/10.1016/j.ejmech.2011.01.043 CrossRefPubMedGoogle Scholar
  6. 6.
    Aldawsari FS, Aguiar RP, Wiirzler LA, Aguayo-Ortiz R, Aljuhani N, Cuman RK, Medina-Franco JL, Siraki AG, Velázquez-Martínez CA (2016) Antiinflammatory and antioxidant properties of a novel resveratrol-salicylate hybrid analog. Bioorg Med Chem Lett 26:1411–1415.  https://doi.org/10.1016/j.bmcl.2016.01.069 CrossRefPubMedGoogle Scholar
  7. 7.
    Desai NC, Shihory NR, Kotadiya GM, Desai P (2014) Synthesis, antibacterial and antitubercular activities of benzimidazole bearing substituted 2-pyridone motifs. Eur J Med Chem 82:480–489.  https://doi.org/10.1016/j.ejmech.2014.06.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Hong SY, Kwak KW, Ryu CK, Kang SJ, Chung KH (2008) Antiproliferative effects of 6-anilino-5-chloro-1H-benzo[d]imidazole-4,7-dione in vascular smooth muscle cells. Bioorg Med Chem 16:644–649.  https://doi.org/10.1016/j.bmc.2007.10.069 CrossRefPubMedGoogle Scholar
  9. 9.
    Bandyopadhyay P, Sathe M, Ponmariappan S, Sharma A, Sharma P, Srivastava AK, Kaushik MP (2011) Exploration of in vitro time point quantitative evaluation of newly synthesized benzimidazole and benzothiazole derivatives as potential antibacterial agents. Bioorg Med Chem Lett 21:7306–7309.  https://doi.org/10.1016/j.bmcl.2011.10.034 CrossRefPubMedGoogle Scholar
  10. 10.
    Xu JY, Zeng Y, Ran Q, Wei Z, Bi Y, He QH, Wang QJ, Hu S, Zhang J, Tang MY, Hua WY, Wu XM (2007) Synthesis and biological activity of 2-alkylbenzimidazoles bearing a N-phenylpyrrole moiety as novel angiotensin II AT1 receptor antagonists. Bioorg Med Chem Lett 17:2921–2926.  https://doi.org/10.1016/j.bmcl.2007.02.042 CrossRefPubMedGoogle Scholar
  11. 11.
    Taniguchi K, Shigenaga S, Ogahara T, Fujitsu T, Matsuo M (1993) Synthesis and antiinflammatory and analgesic properties of 2-amino-1H-benzimidazole and 1,2-dihydro-2-iminocycloheptimidazole derivatives. Chem Pharm Bull 41:301–309.  https://doi.org/10.1248/cpb.41.301 CrossRefPubMedGoogle Scholar
  12. 12.
    Sondhi SM, Rajvanshi S, Johar M, Bharti N, Azam A, Singh AK (2002) Anti-inflammatory, analgesic and antiamoebic activity evaluation of pyrimido[1,6-a]benzimidazole derivatives synthesized by the reaction of ketoisothiocyanates with mono and diamines. Eur J Med Chem 37:835–43.  https://doi.org/10.1016/S0223-5234(02)01403-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Starcević K, Kralj M, Ester K, Sabol I, Grce M, Pavelić K, Karminski-Zamola G (2007) Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles. Bioorg Med Chem 15:4419–4426.  https://doi.org/10.1016/j.bmc.2007.04.032 CrossRefPubMedGoogle Scholar
  14. 14.
    Snow RJ, Abeywardane A, Campbell S, Lord J, Kashem MA, Khine HH, King J, Kowalski JA, Pullen SS, Roma T, Roth GP, Sarko CR, Wilson NS, Winters MS, Wolak JP, Cywin CL (2007) Hit-to-lead studies on benzimidazole inhibitors of ITK: Discovery of a novel class of kinase inhibitors. Bioorg Med Chem Lett 17:3660–3665.  https://doi.org/10.1016/j.bmcl.2007.04.045 CrossRefPubMedGoogle Scholar
  15. 15.
    Kacprzak K (2005) Efficient one-pot synthesis of 1,2,3-triazoles from benzyl and alkyl halides. Synlett 36:943–946.  https://doi.org/10.1055/s-2005-864809 CrossRefGoogle Scholar
  16. 16.
    Aher NG, Pore VS, Mishra NN, Kumar A, Shukla PK, Sharma A, Bhat MK (2009) Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett 19:759–763.  https://doi.org/10.1016/j.bmcl.2008.12.026 CrossRefPubMedGoogle Scholar
  17. 17.
    Wang XL, Wan K, Zhou CH (2010) Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem 45:4631–4639.  https://doi.org/10.1016/j.ejmech.2010.07.031 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Buckle DR, Outred DJ, Rockell CJM, Smith H, Spicer BA (1983) Studies on v-triazoles, 7: Antiallergic 9-oxo-1H,9H-benzopyrano[2,3-d]-v-triazoles. J Med Chem 26:251–254.  https://doi.org/10.1021/jm00356a025 CrossRefPubMedGoogle Scholar
  19. 19.
    Giffin MJ, Heaslet H, Brik A, Lin YC, Cauvi G, Wong CH, McRee DE, Elder JH, Stout CD, Torbett BE (2008) A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J Med Chem 51:6263–6270.  https://doi.org/10.1021/jm800149m CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Patpi SR, Pulipati L, Yogeeswari P, Sriram D, Jain N, Sridhar B, Murthy R, Anjana Devi T, Kalivendi SV, Kantevari S (2012) Design, synthesis, and structure-activity correlations of novel dibenzo[b, d]furan, dibenzo[b, d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J Med Chem 55:3911–3922.  https://doi.org/10.1021/jm300125e CrossRefPubMedGoogle Scholar
  21. 21.
    De Simone R, Chini MG, Bruno I, Riccio R, Mueller D, Werz O, Bifulco G (2011) Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J Med Chem 54:1565–1575.  https://doi.org/10.1021/jm101238d CrossRefPubMedGoogle Scholar
  22. 22.
    Ashok D, Srinivas G, Kumar AV, Gandhi DM (2016) Microwave-assisted synthesis and evaluation of indole based benzofuran scaffolds as antimicrobial and antioxidant agents. Russ J Bioorganic Chem 42:560–566.  https://doi.org/10.1134/S1068162016050034 CrossRefGoogle Scholar
  23. 23.
    Ashok D, Srinivas G, Kumar AV, Gandhi DM, Reddy MS (2015) Facile ionic liquid-mediated, microwave assisted green synthesis and antioxidant studies of novel indolin-2-one annulated spirochromanone conjugates. Russ J Gen Chem 85:708–717.  https://doi.org/10.1134/S1070363215030305 CrossRefGoogle Scholar
  24. 24.
    Ashok D, Gandhi DM, Srinivas G, Kumar AV (2014) Microwave-assisted synthesis of novel 1,2,3-triazole derivatives and their antimicrobial activity. Med Chem Res 23:3005–3018.  https://doi.org/10.1007/s00044-013-0880-1 CrossRefGoogle Scholar
  25. 25.
    Ashok D, Kumar AV, Gandhi DM, Srinivas G, Kumari KM, Vijjulatha M, Sridhar B, Prasad E (2015) Synthesis, antimicrobial activity and molecular docking of novel tetracyclic scaffolds incorporating a flavonoid framework with medium sized oxygen heterocycles. Bioorg Med Chem Lett 25:898–903.  https://doi.org/10.1016/j.bmcl.2014.12.066 CrossRefGoogle Scholar
  26. 26.
    Pathoor R, Bahulayan D (2016) Synthesis of large Stokes shift and narrow emission indole-triazole-carboxamide peptidomimetics via MCR-Click strategy. Tetrahedron Lett 57:2360–2366.  https://doi.org/10.1016/j.tetlet.2016.04.040 CrossRefGoogle Scholar
  27. 27.
    Wilkening I, Signore GD, Hackenberger CPR (2011) Synthesis of phosphonamidate peptides by Staudinger reactions of silylated phosphinic acids and esters. Chem Commun 47:349–351.  https://doi.org/10.1039/C0CC02472D CrossRefGoogle Scholar
  28. 28.
    Hu M, Li J, Yao SQ (2008) In situ “click” assembly of small molecule matrix metalloprotease inhibitors containing zinc-chelating groups. Org Lett 10:5529–5531.  https://doi.org/10.1021/ol802286g CrossRefPubMedGoogle Scholar
  29. 29.
    OSIRIS Property Explorer software, version 2, Actelion Pharmaceuticals Ltd., www.actelion.com; http://www.organic-chemistry.org/prog/peo/
  30. 30.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26.  https://doi.org/10.1016/S0169-409X(00)00129-0 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fadda AA, Afsah el-SM, Awad RS (2013) Synthesis and antimicrobial activity of some new benzo and naphthonitrile derivatives. Eur J Med Chem 60:421–430.  https://doi.org/10.1016/j.ejmech.2012.11.017 CrossRefPubMedGoogle Scholar
  32. 32.
    Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F (2002) Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46:2720–2722.  https://doi.org/10.1128/AAC.46.8.2720-2722.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14:323–328.  https://doi.org/10.1002/1099-1573(200008)4:5%3c323::aid-ptr621%3e3.0.co;2-q
  34. 34.
    Cuendet M, Hostettmann K, Potterat O, Dyatmiko W (1997) Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta 80:1144–1152.  https://doi.org/10.1002/hlca.19970800411 CrossRefGoogle Scholar
  35. 35.
    Chung KT, Thomasson WR, Wu-Yuan CD (1990) Growth inhibition of selected food-borne bacteria, particularly Listeria monocytogenes, by plant extracts. J Appl Microbiol 69:498–503.  https://doi.org/10.1111/j.1365-2672.1990.tb01541.x CrossRefGoogle Scholar
  36. 36.
    Azoro C (2002) Antibacterial activity of crude extract of Azadiracta indica on Salmonella typhi. World J Biotechnol 3:347–357Google Scholar
  37. 37.
    Janovská D, Kubíková K, Kokoška L (2003) Screening for antimicrobial activity of some medicinal plants species of traditional chinese medicine. Czech J Food Sci 21:107–110CrossRefGoogle Scholar
  38. 38.
    Bishnu J, Sunil L, Anuja S (2009) Antibacterial property of different medicinal plants: ocimum sanctum, cinnamomum zeylanicum, xanthoxylum armatum and origanum majorana. J Sci Eng Technol 5:143–150Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dongamanti Ashok
    • 1
  • Srinivas Gundu
    • 1
  • Vikas Kumar Aamate
    • 1
  • Mohan Gandhi Devulapally
    • 1
  1. 1.Department of Chemistry, Green and Medicinal Chemistry LaboratoryOsmania UniversityHyderabadIndia

Personalised recommendations