Molecular Diversity

, Volume 22, Issue 3, pp 657–667 | Cite as

Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety

  • Zhijiang Fan
  • Jun Shi
  • Xiaoping BaoEmail author
Original Article


A series of structurally novel 3-thioether-1-(quinazolin-4-yl)-1H-1,2,4-triazol-5-amine derivatives (7a–7r) were designed and synthesized based on a pharmacophore hybrid approach, and screened for their antibacterial and antifungal activities in vitro. All the target compounds were fully characterized through \(^{\mathrm {1}}\)H NMR, \(^{\mathrm {13}}\)C NMR and HRMS spectra. Among them, the structure of compound 7b was further confirmed via single-crystal X-ray diffraction analysis. The obtained results indicated that several target compounds demonstrated notable inhibition activities against tested phytopathogenic bacteria, using a turbidimetric method. For example, compounds 7d, 7g and 7i exhibited EC\(_{\mathrm {50 }}\) (half-maximal effective concentration) values of 46.9, 47.8 and 43.2 µg/mL, respectively, against the bacterium Xanthomonas axonopodis pv. citri (Xac), which were more potent than commercial agrobactericide Bismerthiazol (56.9 µg/mL). Moreover, EC\(_{\mathrm {50 }}\) values of compounds 7a and 7h were found to be 81.6 and 93.1 µg/mL, respectively, against the bacterium Ralstonia solanacearum (Rs), being over twofold more active than commercial agrobactericide Thiodiazole-copper (189.6 µg/mL). Finally, some compounds displayed a certain degree of inhibition activity against tested phytopathogenic fungi at 50 µg/mL.

Graphical abstract


1, 2, 4-Triazole thioether Quinazoline Synthesis Antibacterial activity 



This work was financially supported by the National Natural Science Foundation of China (No. 21362003).

Supplementary material

11030_2018_9821_MOESM1_ESM.doc (6.1 mb)
Supplementary material 1 (doc 6246 KB)


  1. 1.
    Wang PY, Zhou L, Zhou J, Wu ZB, Xue W, Song BA, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives. Bioorg Med Chem Lett 26:1214–1217. CrossRefPubMedGoogle Scholar
  2. 2.
    Xu WM, Han FF, He M, Hu DY, He J, Yang S, Song BA (2012) Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety. J Agric Food Chem 60:1036–1041. CrossRefPubMedGoogle Scholar
  3. 3.
    Rigano LA, Siciliano F, Enrique R, Sendín L, Filippone Torres PS, Qüesta J, Dow JM, Castagnaro AP, Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. Citri. Mol Plant-Microbe Interact 20:1222–1230. CrossRefPubMedGoogle Scholar
  4. 4.
    Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15. CrossRefPubMedGoogle Scholar
  5. 5.
    Brunings AM, Gabriel DW (2003) Xanthomonas citri: breaking the surface. Mol Plant Pathol 4:141–157. CrossRefPubMedGoogle Scholar
  6. 6.
    Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Cole Trapnell, Aparna G, Jha G, Pandey A, Patil PB, Ishihara H, Meyer DF, Szurek B, Verdier V, Koebnik R, Dow JM, Ryan RP, Hirata H, Tsuyumu S, Lee SWC, Ronald P, Sonti RV, Sluys MV, Leach JE, White FF, Bogdanove AJ (2008) Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99\(^{{\rm A}}\). BMC Genom 9:204–219. CrossRefGoogle Scholar
  7. 7.
    Li Z, Wu S, Bai X, Liu Y, Lu J, Liu Y, Xiao B, Lu X, Fan L (2011) Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 193:6088–6089. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Singh D, Teotia S, Fungal (2014) Disease management in plants. In: Gaur R, Sharma P (eds) Approaches to plant stress and their management. Springer, New Delhi, pp 339–352Google Scholar
  9. 9.
    Wang PY, Gao MN, Zhou L, Wu ZB, Hu DY, Hu J, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored aromatic amphiphiles. Bioorg Med Chem Lett 26:1136–1139. CrossRefPubMedGoogle Scholar
  10. 10.
    Patel TS, Vanparia SF, Patel UH, Dixit RB, Chudasama CJ, Patel BD, Dixit BC (2017) Novel 2,3-disubstituted quinazoline-4(3\(H)\)-one molecules derived from amino acid linked sulphonamide as a potent malarial antifolates for DHFR inhibition. Eur J Med Chem 129:251–265. CrossRefPubMedGoogle Scholar
  11. 11.
    Khan I, Ibrar A, Abbas N, Saeed A (2014) Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: synthetic approaches and multifarious applications. Eur J Med Chem 76:193–244. CrossRefPubMedGoogle Scholar
  12. 12.
    Berest GG, Voskoboynik OY, Kovalenko SI, Antypenko OM, Nosulenko IS, Katsev AM, Shandrovskaya OS (2011) Synthesis and biological activity of novel \(N\)-cycloalkyl-(cycloalkylaryl)-2-[(3-R-2-oxo-2\(H\)-[1,2,4]triazino[2,3-\(c\)]quinazoline-6-yl)thio]acetamides. Eur J Med Chem 46:6066–6074. CrossRefPubMedGoogle Scholar
  13. 13.
    Horn KV, Burda WN, Fleeman R, Shaw LN, Manetsch R (2014) Antibacterial activity of a series of \(N^{\rm 2}\),\(N^{\rm 4 }\)-disubstituted quinazoline-2,4-diamines. J Med Chem 57:3075–3093. CrossRefPubMedGoogle Scholar
  14. 14.
    Jatav V, Kashaw S, Mishra P (2008) Synthesis, antibacterial and antifungal activity of some novel 3-[5-(4-substituted phenyl)1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3\(H\))-ones. Med Chem Res 17:169–181. CrossRefGoogle Scholar
  15. 15.
    Xu GF, Song BA, Bhadury PS, Yang S, Zhang PQ, Jin LH, Xue W, Hu DY, Lu P (2007) Synthesis and antifungal activity of novel S-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg Med Chem 15:3768–3774. CrossRefPubMedGoogle Scholar
  16. 16.
    Shao J, Chen E, Shu K, Chen W, Zhang G, Yu Y (2016) 6-Oxooxazolidine-quinazolines as noncovalent inhibitors with the potential to target mutant forms of EGFR. Bioorg Med Chem 24:3359–3370. CrossRefPubMedGoogle Scholar
  17. 17.
    Maggio B, Daidone G, Raffa D, Plescia S, Mantione L, Cutuli VMC, Mangano NG, Caruso A (2001) Synthesis and pharmacological study of ethyl 1-methyl-5-(substituted3,4-dihydro-4-oxoquinazolin-3-yl)-1\(H\)-pyrazole-4-acetates. Eur J Med Chem 36:737–742. CrossRefPubMedGoogle Scholar
  18. 18.
    Verhaeghe P, Azas N, Gasquet M, Hutter S, Ducros C, Laget M, Rault S, Rathelot P, Vanell P (2008) Synthesis and antiplasmodial activity of new 4-aryl-2-trichloromethylquinazolines. Bioorg Med Chem Lett 18:396–401. CrossRefPubMedGoogle Scholar
  19. 19.
    Küçükgüzela SG, Çıkla-Süzgün P (2015) Recent advances bioactive 1,2,4-triazole-3-thiones. Eur J Med Chem 97:830–870. CrossRefGoogle Scholar
  20. 20.
    Kulabas N, Tatar E, Özakpöınar ÖB, Ozsavc D, Pannecouque C, Clercq ED, Küçükgüzel I (2016) Synthesis and antiproliferative evaluation of novel 2-(4\(H\)-1,2,4-triazole-3-ylthio)acetamide derivatives as inducers of apoptosis in cancer cells. Eur J Med Chem 121:58–70. CrossRefPubMedGoogle Scholar
  21. 21.
    Cui P, Li X, Zhu M, Wang B, Liu J, Chen H (2017) Design, synthesis and antimicrobial activities of thiouracil derivatives containing triazolo-thiadiazole as SecA inhibitors. Eur J Med Chem 127:159–165. CrossRefPubMedGoogle Scholar
  22. 22.
    Isloor AM, Kalluraya B, Shetty P (2009) Regioselective reaction: synthesis, characterization and pharmacological studies of some new Mannich bases derived from 1,2,4-triazoles. Eur J Med Chem 44:3784–3787. CrossRefPubMedGoogle Scholar
  23. 23.
    Küçükgüzel I, Küçükgüzel SG, Rollas S, Kiraz M (2001) Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials. Bioorg Med Chem Lett 11:1703–1707. CrossRefPubMedGoogle Scholar
  24. 24.
    Szulczyk D, Tomaszewski P, Józwiak M, KoziołAE Lis T, Collu D, Iuliano F, Struga M (2017) Synthesis and biological activities of ethyl 2-(2-pyridylacetate) derivatives containing thiourea, 1,2,4-triazole, thiadiazole and oxadiazole. Molecules 22:409–424. CrossRefGoogle Scholar
  25. 25.
    Liu J, Nie M, Wang Y, Hu J, Zhang F, Gao Y, Liu Y, Gong P (2016) Design, synthesis and structure-activity relationships of novel 4-phenoxyquinoline derivatives containing 1,2,4-triazolone moiety as c-Met kinase inhibitors. Eur J Med Chem 123:431–446. CrossRefPubMedGoogle Scholar
  26. 26.
    Li YH, Zhang B, Yang HK, Li Q, Diao PC, You WW (2017) Design, synthesis and biological evaluation of novel alkylsulfanyl-1,2,4-triazoles as cis-restricted combretastatin A-4 analogues. Eur J Med Chem 125:1098–1106. CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu YJ, Guo XF, Fan ZJ, Chen L, Ma LY, Wang HX, Wei Y, Xu XM, Linc JP, Bakulev VA (2016) Approach to thiazole-containing tetrahydropyridines via Aza–Rauhut–Currier reaction and their potent fungicidal and insecticidal activity. RSC Adv 6:112704–112711. CrossRefGoogle Scholar
  28. 28.
    Havrylyuk D, Roman O, Lesyk R (2016) Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline-thiazolidine-based hybrids. Eur J Med Chem 113:145–166. CrossRefPubMedGoogle Scholar
  29. 29.
    Yang L, Bao XP (2017) Synthesis of novel 1,2,4-triazole derivatives containing the quinazolinylpiperidinyl moiety and \(N\)-(substituted phenyl) acetamide group as efficient bactericides against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. RSC Adv 7:34005–34011. CrossRefGoogle Scholar
  30. 30.
    Liu J, Liu Y, Jian J, Bao X (2013) Synthesis and fungicidal activities of novel quinazoline derivatives containing 1,2,4-triazole Schiff-base unit. Chin J Org Chem 33:370–374. CrossRefGoogle Scholar
  31. 31.
    Yan B, Lv X, Du H, Bao X (2016) Design, synthesis and biological activities of novel quinazolinone derivatives bearing 4-phenyl-5-thioxo-1,2,4-triazole Mannich bases. Chin J Org Chem 36:207–212. CrossRefGoogle Scholar
  32. 32.
    Yan BR, Lv XY, Du H, Gao MN, Huang J, Bao XP (2016) Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety. Chem Pap 70:983–993. CrossRefGoogle Scholar
  33. 33.
    Pan D, Du H, Lv X, Bao XP (2016) Synthesis and antibacterial activities of novel quinazoline-2,4-dione derivatives containing the 1,2,4-triazole Schiff-base unit. Chin J Org Chem 36:818–825. CrossRefGoogle Scholar
  34. 34.
    Du H, Fan Z, Yang L, Bao X (2018) Synthesis of novel quinazolin-4(3\(H)\)-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-\(a\)]pyrimidine moiety as effective agricultural bactericides against the pathogen Xanthomonas oryzae pv. oryzae. Mol Divers 22:1–10. CrossRefPubMedGoogle Scholar
  35. 35.
    Lv X, Yang L, Fan Z, Bao X (2018) Synthesis and antimicrobial activities of novel quinazolin-4(3\(H)\)-one derivatives containing a 1,2,4-triazolo[3,4-\(b\)][1,3,4]thiadiazole moiety. J Saudi Chem Soc 22:101–109. CrossRefGoogle Scholar
  36. 36.
    Chen JN, Wang XF, Li T, Wu DW, Fu XB, Zhang GJ, Shen XC, Wang HS (2016) Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem 107:12–25. CrossRefPubMedGoogle Scholar
  37. 37.
    Liu G, Yang S, Song BA, Xue W, Hu DY, Jin LH, Lu P (2006) Microwave assisted synthesis of \(N\)-arylheterocyclic substituted-4-aminoquinazoline derivatives. Molecules 11:272–278. CrossRefPubMedGoogle Scholar
  38. 38.
    Luo Y, Zhang S, Liu ZJ, Chen W, Fu J, Zeng QF, Zhu HL (2013) Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: Derivatives bearing 1,2,4-triazolo[1,5-\(a\)] pyrimidine moiety. Eur J Med Chem 64:54–61. CrossRefPubMedGoogle Scholar
  39. 39.
    Bedingfield PTP, Cowen D, Acklam Cunningham PF, Parsons MR, McConkey GA, Fishwick CWG, Johnson AP (2012) Factors influencing the specificity of inhibitor binding to the human and malaria parasite dihydroorotate dehydrogenases. J Med Chem 55:5841–5850. CrossRefPubMedGoogle Scholar
  40. 40.
    Xiong L, Li H, Jiang LN, Ge JM, Yang WC, Zhu XL, Yang GF (2017) Structure-based discovery of potential fungicides as succinate ubiquinone oxidoreductase inhibitors. J Agric Food Chem 65:1021–1029. CrossRefPubMedGoogle Scholar
  41. 41.
    SPSS Statistics 17.0, SPSS Inc.Google Scholar
  42. 42.
    Zhang S, Li D, Song Z, Zang C, Zhang L, Song X, Li S (2017) "Carbon assimilation" inspired design and divergent synthesis of drimane meroterpenoid mimics as novel fungicidal leads. J Agric Food Chem 65:9013–9021 10.1021/acs.jafc.7b03126CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine ChemicalsGuizhou UniversityGuiyangChina

Personalised recommendations