An efficient solvent-free synthesis of 2-(alkylamino)-2-oxo-1-arylethyl-6,12-dioxo-6,12-dihydroindolo[1,2-b]isoquinoline-11-carboxylate derivatives via four-component reaction

  • Tahmineh Kenarkoohi
  • Abbas Rahmati
Short Communication


A one-pot approach for the synthesis of a new series of 2-(alkylamino)-2-oxo-1-arylethyl-6,12-dioxo-6,12-dihydroindolo[1,2-b]isoquinoline-11-carboxylate derivatives via a four-component reaction using isatin, homophthalic anhydride, cyclohexyl isocyanide and an aldehyde is described. This method has several advantages such as being catalyst- and solvent-free reaction and a high-efficiency process with high to excellent yields.

Graphical abstract


Passerini-like reaction Dihydroindole Isoquinoline Isocyanide Indoloisoquinoline 



We gratefully acknowledge financial support from the Research Council of the University of Isfahan.

Compliance with ethical standards

Conflict of interest

Tahmineh Kenarkoohi and Abbas Rahmati confirm that this article content has no conflicts of interest.

Supplementary material

11030_2018_9911_MOESM1_ESM.doc (5.5 mb)
Supplementary material 1 (DOC 5667 kb)


  1. 1.
    Goldbrunner M, Loidl G, Polossek T, Mannschreck A, von Angerer E (1997) Inhibition of tubulin polymerization by 5,6-dihydroindolo[2,1-a]isoquinoline derivatives. J Med Chem 40:3524–3533. CrossRefGoogle Scholar
  2. 2.
    Gastpar R, Goldbrunner M, Marko D, von Angerer E (1998) Methoxy-substituted 3-formyl-2-phenylindoles inhibit tubulin polymerization. J Med Chem 41:4965–4972. CrossRefGoogle Scholar
  3. 3.
    Ambros R, Von Angerer S, Wiegrebe W (1998) C-12-Substituted indolo[2,1-a]isoquinolines as estrogen receptor affinic cytostatic agents. Arch Pharm 321:743–747. CrossRefGoogle Scholar
  4. 4.
    Polossek T, Ambros R, Von Angerer S, Brandl G, Mannschreck A, Von Angerer E (1992) 6-Alkyl-12-formylindolo[2,1-a]isoquinolines. Syntheses, estrogen receptor binding affinities, and stereospecific cytostatic activity. J Med Chem 35:3537–3547. CrossRefGoogle Scholar
  5. 5.
    Ambros R, Schneider MR, Von Angerer S (1990) Indolo[2,1-a]isoquinolines. Syntheses, steroid hormone receptor binding affinities, and cytostatic activity. J Med Chem 33:153–160. CrossRefGoogle Scholar
  6. 6.
    Ambros R, Von Angerer S, Wiegrebe W (1998) Synthesis and antitumor activity of methoxy-indolo[2,1-a]isoquinolines. Arch Pharm 321:481–486. CrossRefGoogle Scholar
  7. 7.
    Saundane AR, Ranganafh SH, Prayagraj G, Rudresh K, Satyanarayana ND (1998) Synthesis and pharmacological studies of some new 11H-indolo[3,2-c]isoquinolin-5-yl thio)acetyl thiosemicarbazide andits derivatives. Orient J Chem 14:251–267Google Scholar
  8. 8.
    Ewing J, Hughes GK, Ritchie E, Taylor WC (1952) An alkaloid related to dehydrolaudanosoline. Nature 169:618–619. CrossRefGoogle Scholar
  9. 9.
    Benington F, Morin RD (1967) Synthesis of (±)-cryptowoline iodide. J Org Chem 32:1050–1053. CrossRefGoogle Scholar
  10. 10.
    Elliott IW Jr (1982) Synthesis of (±)-o-methylcryptaustoline iodide. J Org Chem 47:5398–5400. CrossRefGoogle Scholar
  11. 11.
    Meyers AI, Sielecki TM (1991) Total synthesis of the dibenzopyrrocoline alkaloid S-(+)-cryptaustoline. Revision of absolute configuration due to an unusual inversion in stereochemistry. J Am Chem Soc 113:2789–2790. CrossRefGoogle Scholar
  12. 12.
    Meyers AI, Sielecki TM, Crans DC, Marshman RW, Nguyen TH (1992) (-)-Cryptaustoline: its synthesis, revision of absolute stereochemistry, and mechanism of inversion of stereochemistry. J Am Chem Soc 114:8483–8489. CrossRefGoogle Scholar
  13. 13.
    Cimanga K, Bruyne TD, Pieters L, Vlietinck AJ (1997) In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. J Nat Prod 60:688–691. CrossRefGoogle Scholar
  14. 14.
    Cimanga K, De Bruyne T, Lasure A, Van Poel B, Pieters L, Claeys M, Berghe DV, Kambu K, Tona L, Vlietinck AJ (1996) In vitro biological activities of alkaloids from Cryptolepis sanguinolenta. Planta Med 62:22–27. CrossRefGoogle Scholar
  15. 15.
    Noamesi BK, Bamgbose SO (1983) Studies on cryptolepine. Cryptolepine antagonism of noradrenaline and modification of this effect by calcium ions and prostaglandin E2 on rat isolated mesenteric artery. Planta Med 47:100–102. CrossRefGoogle Scholar
  16. 16.
    Noamesi BK, Bamgbose SOA (1984) Studies on cryptolepine. III: effect of cryptolepine on the tone and prostaglandin production in isolated rabbit duodenum. Planta Med 50:98–101. CrossRefGoogle Scholar
  17. 17.
    Noamesi BK, Bamgbose SOA (1983) Studies on cryptolepine. III: effect of cryptolepine on smooth muscle contractions and cholinergic nerve transmission of isolated guinea-pig ileum. Planta Med 48:48–51. CrossRefGoogle Scholar
  18. 18.
    Van Baelen G, Meyers C, Lemière GLF, Hostyn S, Dommisse R, Maes L, Augustyns K, Haemers A, Pieters L, Maes BUW (2008) Synthesis of 6-methyl-6H-indolo[3,2-c]isoquinoline and 6-methyl-6H-indolo[2,3-c]isoquinoline: two new unnatural isoquinoline isomers of the cryptolepine series. Tetrahedron 64:11802–11809. CrossRefGoogle Scholar
  19. 19.
    Lötter ANC, Pathak R, Sello TS, Fernandes MA, van Otterlo WAL, de Koning CB (2007) Synthesis of the dibenzopyrrocoline alkaloid skeleton:indolo[2,1-a]isoquinolines and related analogues. Tetrahedron 63:2263–2274. CrossRefGoogle Scholar
  20. 20.
    Gour J, Gatadi S, Nagarsenkar A, Babu BN, Madhavi YV, Nanduri S (2018) Synthesis of indolo[1,2-b]isoquinoline derivatives by Lewis acid-catalyzed intramolecular Friedel-Crafts alkylation reaction. Eur J Org Chem 2018:2817–2821. CrossRefGoogle Scholar
  21. 21.
    Nguyen HH, Fettinger JC, Haddadin MJ, Kurth MJ (2015) Expedient one-pot synthesis of indolo[3,2-c]isoquinolines via a base-promoted N-alkylation/tandem cyclization. Tetrahedron Lett 56:5429–5433. CrossRefGoogle Scholar
  22. 22.
    Xia Y-Q, Dong L (2017) Ruthenium(II)-catalyzed indolo[2,1-a]isoquinolines synthesis by tandem C–H allylation and oxidative cyclization of 2-phenylindoles with allyl carbonates. Org Lett 19:2258–2261. CrossRefGoogle Scholar
  23. 23.
    Fodor L, Csomós P, Csámpai A, Sohár P (2012) Novel indole syntheses by ring transformation of β-lactam-condensed 1,3-benzothiazines into indolo[2,3-b][1, 4]benzothiazepines and indolo[3,2-c]isoquinolines. Tetrahedron 68:851–856. CrossRefGoogle Scholar
  24. 24.
    Qu J, Kumar N, Alamgir M, Black DSC (2009) A versatile synthetic route to 11H-indolo[3,2-c]isoquinolines. Tetrahedron Lett 50:5628–5630. CrossRefGoogle Scholar
  25. 25.
    Orito K, Miyazawa M, Kanbayashi R, Tokuda M, Suginome H (1999) Synthesis of phthalideisoquinoline and protoberberine alkaloids and indolo[2,1-a]isoquinolines in a divergent route involving palladium(0)-catalyzed carbonylation. J Org Chem 64:6583–6596. CrossRefGoogle Scholar
  26. 26.
    Sharma PMV (2017) Novel synthesis of biologically active indolo[3,2-c]isoquinoline derivatives. Arab J Chem 10:746–749. CrossRefGoogle Scholar
  27. 27.
    Alicea J, Wolfe JP (2014) Synthesis of substituted tetrahydroindoloisoquinoline derivatives via intramolecular Pd-catalyzed alkene carboamination reactions. J Org Chem 79:4212–4217. CrossRefGoogle Scholar
  28. 28.
    Suarez LL, Greaney MF (2011) Tandem indole C–H alkenylation/arylation for tetra-substituted alkene synthesis. Chem Commun 47:7992–7994. CrossRefGoogle Scholar
  29. 29.
    Sanz R, Ignacio JM, Castroviejo MP, Fañanás FJ (2007) Synthesis of new indolo[1,2-b]isoquinoline derivatives from N-(2-bromobenzyl)indole. ARKIVOC 2007:84–91. Google Scholar
  30. 30.
    Bennasar M-L, Roca T, Ferrando F (2004) Intramolecular reactions of 2-indolylacyl radicals: access to 1,2-fused ring indole derivatives. Org Lett 6:759–762. CrossRefGoogle Scholar
  31. 31.
    Erythropel HC, Zimmerman JB, de Winter TM, Petitjean L, Melnikov F, Lam CH, Lounsbury AW, Mellor KE, Janković NZ, Tu Q, Pincus LN, Falinski MM, Shi W, Coish P, Plata DL, Anastas PT (2018) The green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem 20:1929–1961. CrossRefGoogle Scholar
  32. 32.
    Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074. CrossRefGoogle Scholar
  33. 33.
    Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Solvent-free heterocyclic synthesis. Chem Rev 109:4140–4182. CrossRefGoogle Scholar
  34. 34.
    Herrera RP, Marqués-López E (2015) Multicomponent reactions: concepts and applications for design and synthesis. Wiley, HobokenGoogle Scholar
  35. 35.
    Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv 2:4547–4592. CrossRefGoogle Scholar
  36. 36.
    Kazemizadeh AR, Ali Ramazani (2012) Synthetic applications of Passerini reaction. Curr Org Chem 16:418–450. CrossRefGoogle Scholar
  37. 37.
    Rahmati A, Moazzam A, Khalesi Z (2014) A one-pot four-component synthesis of N-arylidene-2-aryl-imidazo[1,2-a]azin-3-amines. Tetrahedron Lett 55:3840–3843. CrossRefGoogle Scholar
  38. 38.
    Rahmati A, Ahmadi S, Ahmadi-Varzaneh M (2014) One-pot synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[b][1, 4]diazepine and malonamide derivatives using multi-component reactions. Tetrahedron 70:9512–9521. CrossRefGoogle Scholar
  39. 39.
    Beyrati M, Forutan M, Hasaninejad A, Rakovský E, Babaei S, Maryamabadi A, Mohebbi G (2017) One-pot, four-component synthesis of spiroindoloquinazoline derivatives as phospholipase inhibitors. Tetrahedron 73:5144–5152. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of IsfahanIsfahanIran

Personalised recommendations