Advertisement

Molecular Diversity

, Volume 22, Issue 1, pp 247–258 | Cite as

Chemoinformatics: a perspective from an academic setting in Latin America

  • J. Jesús Naveja
  • C. Iluhí Oviedo-Osornio
  • Nicole N. Trujillo-Minero
  • José L. Medina-Franco
Expert Opinion

Abstract

This perspective discusses the current progress of a chemoinformatics group in a major university in Latin America. Three major aspects are discussed in a critical manner: research, education, and collaboration with industry and other public research networks. It is also presented an overview of the progress in applied research and development of research concepts. Efforts to teach chemoinformatics at the undergraduate and graduate levels are discussed. It is addressed how the partnership with industry and other not-for-profit research institutions not only brings additional sources of funding but, more importantly, increases the impact of the multidisciplinary work and offers the students to be exposed to other research environments. We also discuss the main perspectives and challenges that remain to be addressed in these settings.

Keywords

Activity landscape Chemoinformatics Computer-aided drug design D-Tools Epi-informatics Structure–activity relationships Collaboration ChemMaps 

Notes

Acknowledgements

We thank all current and previous members of the research group DIFACQUIM that contributed to the research that is discussed in this work. We also thanks PAPIIT Project IA204016, the research networks Nuevas Alternativas para el Tratamiento de Enfermedades Infecciosas (NUATEI IIB- UNAM) and Red de Farmoquímicos (CONACyT), and funding from the ‘Programa de Apoyo a la Investigación y el Posgrado’ (PAIP) 50009163, Facultad de Química, UNAM. JJN is thankful to CONACyT for the granted Scholarship Number 622969.

References

  1. 1.
    Gasteiger J (2016) Chemoinformatics: achievements and challenges, a personal view. Molecules 21:151.  https://doi.org/10.3390/molecules21020151 CrossRefPubMedGoogle Scholar
  2. 2.
    Martínez-Mayorga K, Peppard TL, Yongye AB, Santos R, Giulianotti M, Medina-Franco JL (2011) Characterization of a comprehensive flavor database. J Chemom 25:550–560.  https://doi.org/10.1002/cem.1399 CrossRefGoogle Scholar
  3. 3.
    Martinez-Mayorga K, Medina-Franco JL (2009) Chemoinformatics-applications in food chemistry. Adv Food Nutr Res 58:33–56.  https://doi.org/10.1016/S1043-4526(09)58002-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Helal KY, Maciejewski M, Gregori-Puigjané E, Glick M, Wassermann AM (2016) Public domain HTS fingerprints: design and evaluation of compound bioactivity profiles from PubChem’s Bioassay Repository. J Chem Inf Model 56:390–398.  https://doi.org/10.1021/acs.jcim.5b00498 CrossRefPubMedGoogle Scholar
  5. 5.
    Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure-activity relationship analysis. J Med Chem 53:8209–8223.  https://doi.org/10.1021/jm100933w CrossRefPubMedGoogle Scholar
  6. 6.
    Maggiora GM, Bajorath J (2014) Chemical space networks: a powerful new paradigm for the description of chemical space. J Comput Aided Mol Des 28:795–802.  https://doi.org/10.1007/s10822-014-9760-0 CrossRefPubMedGoogle Scholar
  7. 7.
    Oprea TI, Gottfries J (2001) Chemography: the art of navigating in chemical space. J Comb Chem 3:157–166.  https://doi.org/10.1021/cc0000388 CrossRefPubMedGoogle Scholar
  8. 8.
    Schneider P, Schneider G (2017) Privileged structures revisited. Angew Chem Int Ed Engl 56:7971–7974.  https://doi.org/10.1002/anie.201702816 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Reymond J-L (2015) The chemical space project. Acc Chem Res 48:722–730.  https://doi.org/10.1021/ar500432k CrossRefPubMedGoogle Scholar
  10. 10.
    Yoo J, Kim S-J, Son D, Seo H, Baek SY, Maeng CY, Lee C, Kim IS, Jung YH, Lee SM, Park HJ (2016) Computer-aided identification of new histone deacetylase 6 selective inhibitor with anti-sepsis activity. Eur J Med Chem 116:126–135.  https://doi.org/10.1016/j.ejmech.2016.03.046 CrossRefPubMedGoogle Scholar
  11. 11.
    Ferreira RS, Dessoy MA, Pauli I, Souza ML, Krogh R, Sales AI, Oliva G, Dias LC, Andricopulo AD (2014) Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J Med Chem 57:2380–2392.  https://doi.org/10.1021/jm401709b CrossRefPubMedGoogle Scholar
  12. 12.
    Palestro PH, Gavernet L, Estiu GL, Bruno Blanch LE (2014) Docking applied to the prediction of the affinity of compounds to P-glycoprotein. Biomed Res Int 2014:358425.  https://doi.org/10.1155/2014/358425 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Paulino M, Iribarne F, Hansz M, Vega M, Seoane G, Cerecetto H, Di Maio R, Caracelli I, Zukerman-Schpector J, Olea C, Stoppani AOM, Berriman M, Fairlamb AH, Tapia O (2002) Computer assisted design of potentially active anti-trypanosomal compounds. J Mol Struct (Thoechem) 584:95–105.  https://doi.org/10.1016/S0166-1280(02)00009-X CrossRefGoogle Scholar
  14. 14.
    Bello M, Martínez-Archundia M, Correa-Basurto J (2013) Automated docking for novel drug discovery. Expert Opin Drug Discov 8:821–834.  https://doi.org/10.1517/17460441.2013.794780 CrossRefPubMedGoogle Scholar
  15. 15.
    Willett P (2000) Chemoinformatics—similarity and diversity in chemical libraries. Curr Opin Biotechnol 11:85–88.  https://doi.org/10.1016/S0958-1669(99)00059-2 CrossRefPubMedGoogle Scholar
  16. 16.
    Till T (2007) The TikZ and PGF Packages. Manual for version 1.18. https://www.bu.edu/math/files/2013/08/tikzpgfmanual.pdf
  17. 17.
    Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57:3186–3204.  https://doi.org/10.1021/jm401411z CrossRefPubMedGoogle Scholar
  18. 18.
    Saldívar-González FI, Naveja JJ, Palomino-Hernández O, Medina-Franco JL (2017) Getting SMARt in drug discovery: chemoinformatics approaches for mining structure-multiple activity relationships. RSC Adv 7:632–641.  https://doi.org/10.1039/C6RA26230A CrossRefGoogle Scholar
  19. 19.
    Bajorath J, Peltason L, Wawer M, Guha R, Lajiness MS, Van Drie JH (2009) Navigating structure–activity landscapes. Drug Discov Today 14:698–705.  https://doi.org/10.1016/j.drudis.2009.04.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Guha R, Van Drie JH (2008) Structure–activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48:646–658.  https://doi.org/10.1021/ci7004093 CrossRefPubMedGoogle Scholar
  21. 21.
    Shanmugasundaram V, Maggiora GM (2001) Characterizing property and activity landscapes using an information-theoretic approach. CINF-032Google Scholar
  22. 22.
    Naveja JJ, Medina-Franco JL (2015) Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery. Expert Opin Drug Discov 10:1059–1070.  https://doi.org/10.1517/17460441.2015.1073257 CrossRefPubMedGoogle Scholar
  23. 23.
    Naveja JJ, Medina-Franco JL (2015) Activity landscape sweeping: insights into the mechanism of inhibition and optimization of DNMT1 inhibitors. RSC Adv 5:63882–63895.  https://doi.org/10.1039/C5RA12339A CrossRefGoogle Scholar
  24. 24.
    DIFACQUIM (2017) D-TOOLS. https://www.difacquim.com/d-tools/. Accessed 07 Nov 2017
  25. 25.
    González-Medina M, Prieto-Martínez FD, Owen JR, Medina-Franco JL (2016) Consensus Diversity Plots: a global diversity analysis of chemical libraries. J Cheminform 8:63.  https://doi.org/10.1186/s13321-016-0176-9 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    González-Medina M, Méndez-Lucio O, Medina-Franco JL (2017) Activity Landscape Plotter: a web-based application for the analysis of structure–activity relationships. J Chem Inf Model 57:397–402.  https://doi.org/10.1021/acs.jcim.6b00776 CrossRefPubMedGoogle Scholar
  27. 27.
    González-Medina M, Medina-Franco JL (2017) Platform for unified molecular analysis: PUMA. J Chem Inf Model 57:1735–1740.  https://doi.org/10.1021/acs.jcim.7b00253 CrossRefPubMedGoogle Scholar
  28. 28.
    Medina-Franco JL (2012) Scanning structure-activity relationships with structure–activity similarity and related maps: from consensus activity cliffs to selectivity switches. J Chem Inf Model 52:2485–2493.  https://doi.org/10.1021/ci300362x CrossRefPubMedGoogle Scholar
  29. 29.
    Pérez-Villanueva J, Santos R, Hernández-Campos A, Giulianotti MA, Castillo R, Medina-Franco JL (2011) Structure-activity relationships of benzimidazole derivatives as antiparasitic agents: dual activity-difference (DAD) maps. Med Chem Commun 2:44–49.  https://doi.org/10.1039/C0MD00159G CrossRefGoogle Scholar
  30. 30.
    Medina-Franco JL, Martinez-Mayorga K, Meurice N (2014) Balancing novelty with confined chemical space in modern drug discovery. Expert Opin Drug Discov 9:151–165.  https://doi.org/10.1517/17460441.2014.872624 CrossRefPubMedGoogle Scholar
  31. 31.
    López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL (2012) Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today 17:718–726.  https://doi.org/10.1016/j.drudis.2012.04.001 CrossRefPubMedGoogle Scholar
  32. 32.
    Gortari EF, Medina-Franco JL (2015) Epigenetic relevant chemical space: a chemoinformatic characterization of inhibitors of DNA methyltransferases. RSC Adv 5:87465–87476.  https://doi.org/10.1039/C5RA19611F CrossRefGoogle Scholar
  33. 33.
    Medina-Franco J, Martinez-Mayorga K, Giulianotti M, Houghten R, Pinilla C (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Des 4:322–333.  https://doi.org/10.2174/157340908786786010 CrossRefGoogle Scholar
  34. 34.
    Osolodkin DI, Radchenko EV, Orlov AA, Voronkov AE, Palyulin VA, Zefirov NS (2015) Progress in visual representations of chemical space. Expert Opin Drug Discov 10:959–973.  https://doi.org/10.1517/17460441.2015.1060216 CrossRefPubMedGoogle Scholar
  35. 35.
    Prieto-Martínez FD, Gortari EF, Méndez-Lucio O, Medina-Franco JL (2016) A chemical space odyssey of inhibitors of histone deacetylases and bromodomains. RSC Adv 6:56225–56239.  https://doi.org/10.1039/C6RA07224K CrossRefGoogle Scholar
  36. 36.
    Méndez-Lucio O, Naveja JJ, Vite-Caritino H, Prieto-Martínez FD, Medina-Franco JL (2016) Review. One drug for multiple targets: a computational perspective. J Mex Chem Soc 60:168–181Google Scholar
  37. 37.
    Fernández-de Gortari E, García-Jacas CR, Martinez-Mayorga K, Medina-Franco JL (2017) Database fingerprint (DFP): an approach to represent molecular databases. J Cheminform 9:9.  https://doi.org/10.1186/s13321-017-0195-1 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Naveja JJ, Medina-Franco JL (2017) Insights from pharmacological similarity of epigenetic targets in epipolypharmacology. Drug Discov Today.  https://doi.org/10.1016/j.drudis.2017.10.006 PubMedGoogle Scholar
  39. 39.
    Naveja JJ, Medina-Franco JL (2017) ChemMaps: towards an approach for visualizing the chemical space based on adaptive satellite compounds. F1000Res.  https://doi.org/10.12688/f1000research.12095.1.
  40. 40.
    Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magariños MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–D954.  https://doi.org/10.1093/nar/gkw1074 CrossRefPubMedGoogle Scholar
  41. 41.
    Medina-Franco JL, Giulianotti MA, Yu Y, Shen L, Yao L, Singh N (2009) Discovery of a novel protein kinase B inhibitor by structure-based virtual screening. Bioorg Med Chem Lett 19:4634–4638.  https://doi.org/10.1016/j.bmcl.2009.06.078 CrossRefPubMedGoogle Scholar
  42. 42.
    Saldívar-González FI, Hernández-Luis F, Lira-Rocha A, Medina-Franco JL (2017) Manual de Quimioinformática, 1st edn. https://www.difacquim.com/
  43. 43.
    Medina-Franco JL (2016) Epi-informatics: discovery and development of small molecule epigenetic drugs and probes, 1st edn. Elsevier, AmsterdamGoogle Scholar
  44. 44.
    Díaz-Eufracio BI, Naveja JJ, Medina-Franco JL (2017) Protein–protein interaction modulators for epigenetic therapies. Adv Protein Chem Struct Biol.  https://doi.org/10.1016/bs.apcsb.2017.06.002 PubMedGoogle Scholar
  45. 45.
    Naveja JJ, Dueñas-González A, Medina-Franco JL (2016) Drug repurposing for epigenetic targets guided by computational methods. In: Medina-Franco JL (ed) Epi-Informatics, 1st edn. Elsevier, Amsterdam, pp 327–357.  https://doi.org/10.1016/B978-0-12-802808-7.00012-5 CrossRefGoogle Scholar
  46. 46.
    Dueñas-González A, Naveja JJ, Medina-Franco JL (2016) Introduction of epigenetic targets in drug discovery and current status of epi-drugs and epi-probes. In: Epi-Informatics, 1st edn. Elsevier, Amsterdam, pp 1–20.  https://doi.org/10.1016/B978-0-12-802808-7.00001-0
  47. 47.
    García-Sánchez MO, Cruz-Monteagudo M, Medina-Franco JL (2017) Quantitative structure-epigenetic activity relationships. In: Roy K (ed) Advances in QSAR modeling. Springer, Berlin, pp 303–338.  https://doi.org/10.1007/978-3-319-56850-8_8 CrossRefGoogle Scholar
  48. 48.
    Medina-Franco JL, Yoo J, Dueñas-González A (2015) DNA methyltransferase inhibitors for cancer therapy. In: Epigenetic Technological Applications. Elsevier, pp 265–290.  https://doi.org/10.1016/B978-0-12-801080-8.00013-2
  49. 49.
    Medina-Franco JL (2015) Discovery and development of lead compounds from natural sources using computational approaches. In: Mukherjee P (ed) Evidence-based validation of herbal medicine. Elsevier, Amsterdam, pp 455–475.  https://doi.org/10.1016/B978-0-12-800874-4.00021-0 CrossRefGoogle Scholar
  50. 50.
    Martinez-Mayorga K, Medina-Franco JL (2014) Foodinformatics: applications of chemical information to food chemistry. Springer, Cham.  https://doi.org/10.1007/978-3-319-10226-9
  51. 51.
    Peña-Castillo A, Méndez-Lucio O, Owen JR, Martínez-Mayorga K, Medina-Franco JL (2018) Chemoinformatics in food science. In Gasteiger J, Engel T (ed) Chemoinformatics—volume 2: from methods to applications (in press)Google Scholar
  52. 52.
    Saldívar-González F, Prieto-Martínez FD, Medina-Franco JL (2017) Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educación Química 28:51–58.  https://doi.org/10.1016/j.eq.2016.06.002 CrossRefGoogle Scholar
  53. 53.
    Medina-Franco JL, Fernández-de Gortari E, Naveja JJ (2015) Avances en el diseño de fármacos asistido por computadora. Educación Química 26:180–186.  https://doi.org/10.1016/j.eq.2015.05.002 CrossRefGoogle Scholar
  54. 54.
    Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res 44:D1045–D1053.  https://doi.org/10.1093/nar/gkv1072 CrossRefPubMedGoogle Scholar
  55. 55.
    Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097.  https://doi.org/10.1093/nar/gkt1068 CrossRefPubMedGoogle Scholar
  56. 56.
    Kuck D, Singh N, Lyko F, Medina-Franco JL (2010) Novel and selective DNA methyltransferase inhibitors: docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18:822–829.  https://doi.org/10.1016/j.bmc.2009.11.050 CrossRefPubMedGoogle Scholar
  57. 57.
    Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F (2011) Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers 15:293–304.  https://doi.org/10.1007/s11030-010-9262-5 CrossRefPubMedGoogle Scholar
  58. 58.
    Singh N, Dueñas-González A, Lyko F, Medina-Franco JL (2009) Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem 4:792–799.  https://doi.org/10.1002/cmdc.200900017 CrossRefPubMedGoogle Scholar
  59. 59.
    Méndez-Lucio O, Tran J, Medina-Franco JL, Meurice N, Muller M (2014) Toward drug repurposing in epigenetics: olsalazine as a hypomethylating compound active in a cellular context. ChemMedChem 9:560–565.  https://doi.org/10.1002/cmdc.201300555 CrossRefPubMedGoogle Scholar
  60. 60.
    Castellano S, Kuck D, Viviano M, Yoo J, López-Vallejo F, Conti P, Tamborini L, Pinto A, Medina-Franco JL, Sbardella G (2011) Synthesis and biochemical evaluation of \(\updelta \)(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J Med Chem 54:7663–7677.  https://doi.org/10.1021/jm2010404 CrossRefPubMedGoogle Scholar
  61. 61.
    Garella D, Atlante S, Borretto E, Cocco M, Giorgis M, Costale A, Stevanato L, Miglio G, Cencioni C, Fernández-de Gortari E, Medina-Franco JL, Spallotta F, Gaetano C, Bertinaria M (2016) Design and synthesis of N-benzoyl amino acid derivatives as DNA methylation inhibitors. Chem Biol Drug Des 88:664–676.  https://doi.org/10.1111/cbdd.12794 CrossRefPubMedGoogle Scholar
  62. 62.
    Song J, Rechkoblit O, Bestor TH, Patel DJ (2011) RCSB PDB-3PTA: crystal structure of human DNMT1(646–1600) in complex with DNA Structure Summary Page. Science.  https://doi.org/10.2210/pdb3pta/pdb Google Scholar
  63. 63.
    Qiu C, Sawada K, Zhang X, Cheng X (2002) The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 9:217–224.  https://doi.org/10.1038/nsb759 PubMedPubMedCentralGoogle Scholar
  64. 64.
    De Clercq E (2013) The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). Adv Pharmacol 67:317–358.  https://doi.org/10.1016/B978-0-12-405880-4.00009-3 CrossRefPubMedGoogle Scholar
  65. 65.
    Medina-Franco JL, Martínez-Mayorga K, Juárez-Gordiano C, Castillo R (2007) Pyridin-2(1H)-ones: a promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors. ChemMedChem 2:1141–1147.  https://doi.org/10.1002/cmdc.200700054 CrossRefPubMedGoogle Scholar
  66. 66.
    Vite-Caritino H, Méndez-Lucio O, Reyes H, Cabrera A, Chávez D, Medina-Franco JL (2016) Advances in the development of pyridinone derivatives as non-nucleoside reverse transcriptase inhibitors. RSC Adv 6:2119–2130.  https://doi.org/10.1039/C5RA25722K CrossRefGoogle Scholar
  67. 67.
    Gallop MA, Barrett RW, Dower WJ, Fodor SP, Gordon EM (1994) Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem 37:1233–1251.  https://doi.org/10.1021/jm00035a001 CrossRefPubMedGoogle Scholar
  68. 68.
    Olmedo DA, González-Medina M, Gupta MP, Medina-Franco JL (2017) Cheminformatic characterization of natural products from Panama. Mol Divers 21:779–789.  https://doi.org/10.1007/s11030-017-9781-4 CrossRefPubMedGoogle Scholar
  69. 69.
    González-Medina M, Owen JR, El-Elimat T, Pearce CJ, Oberlies NH, Figueroa M, Medina-Franco JL (2017) Scaffold diversity of fungal metabolites. Front Pharmacol 8:180.  https://doi.org/10.3389/fphar.2017.00180 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Baell JB (2016) Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 79:616–628.  https://doi.org/10.1021/acs.jnatprod.5b00947 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Chemistry, Department of PharmacyUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.PECEM, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations