Molecular Diversity

, Volume 21, Issue 4, pp 779–789 | Cite as

Cheminformatic characterization of natural products from Panama

  • Dionisio A. OlmedoEmail author
  • Mariana González-Medina
  • Mahabir P. Gupta
  • José L. Medina-FrancoEmail author
Original Article


In this work, we discuss the characterization and diversity analysis of 354 natural products (NPs) from Panama, systematically analyzed for the first time. The in-house database was compared to NPs from Brazil, compounds from Traditional Chinese Medicine, natural and semisynthetic collections used in high-throughput screening, and compounds from ChEMBL. An analysis of the “global diversity” was conducted using molecular properties of pharmaceutical interest, three molecular fingerprints of different design, molecular scaffolds, and molecular complexity. The global diversity was visualized using consensus diversity plots that revealed that the secondary metabolites in the Panamanian flora have a large scaffold diversity as compared to other composite databases and also have several unique scaffolds. The large scaffold diversity is in agreement with the broad range of biological activities that this collection of NPs from Panama has shown. This study also provided further quantitative evidence of the large structural complexity of NPs. The results obtained in this study support that NPs from Panama are promising candidates to identify selective molecules and are suitable sources of compounds for virtual screening campaigns.


Cheminformatics Chemical space Chemical diversity Consensus diversity plots Natural products Structural similarity Panamanian biodiversity 



Natural products


NPs database of CIFLORPAN, The University of Panama, Republic of Panama


NPs database of UEFS, The State University of Feira De Santana, Bahia, Brazil


NPs screening compounds


Semisynthetic screening compounds


Traditional Chinese Medicine, Taiwan


Consensus diversity plots


Extended connectivity fingerprints


Molecular Access System keys


Cumulative distribution function


Molecular operating environment


Principal component analysis


Molecular equivalent indices


Cyclic system recovery

Mol. Glob.

Molecular globularity

\(\hbox {Fsp}^{3}\)

Fraction of sp3-hybridized atoms


Fraction of chiral centers


Principal moment of inertia


Ratio of normalized moment of inertia



We thank the Faculty of Chemistry of the Univer sidad Nacional Autónoma de México for granting a postdoctoral stay. Authors thank the research group DIFACQUIM for their collaboration. DAO thanks the Office of Vice President for Academic affairs of the University of Panama for granting paid leave of absence for the accomplishment of the postdoctoral internship at UNAM. MPG and DAO acknowledge SNI awards from SENACYT of Panama. We also thank funding from the ‘Programa de Apoyo a la Investigaciónn y el Posgrado (PAIP) 50009163, Facultad de Química, UNAM.

Compliance with ethical standards

Conflict of interest

Authors declare that there is no financial or commercial conflict of interest.

Supplementary material

11030_2017_9781_MOESM1_ESM.pdf (628 kb)
Supplementary material 1 (pdf 627 KB)


  1. 1.
    Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 9:629–661. doi: 10.1021/acs.jnatprod.5b01055 CrossRefGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. doi: 10.1021/np200906s CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi: 10.1021/np068054v CrossRefPubMedGoogle Scholar
  4. 4.
    Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354. doi: 10.1016/j.cbpa.2011.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schreiber SL (2009) Organic chemistry: molecular diversity by design. Nature 457:153–154. doi: 10.1038/457153a CrossRefPubMedGoogle Scholar
  6. 6.
    Schneider G, Grabowski K (2007) Properties and architecture of drugs and natural products revisited. Curr Chem Biol 1:115–127. doi: 10.2174/2212796810701010115 Google Scholar
  7. 7.
    Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695. doi: 10.1016/j.bbagen.2013.02.008 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sen S, Prabhu G, Bathula C, Hati S (2014) Diversity-oriented asymmetric synthesis. Synthesis 46:2099–2121. doi: 10.1055/s-0033-1341247 CrossRefGoogle Scholar
  9. 9.
    Welsch ME, Snyder SA, Stockwell BR (2010) Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol 14:347–361. doi: 10.1016/j.cbpa CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wetzel S, Bon RS, Kumar K (2011) Biology-oriented synthesis. Angew Chem Int Ed Engl 50:10800–10826. doi: 10.1002/anie.201007004 CrossRefPubMedGoogle Scholar
  11. 11.
    van Hattum H, Waldmann H (2014) Biology-oriented synthesis: harnessing the power of evolution. J Am Chem Soc 136:11853–11859. doi: 10.1021/ja505861d CrossRefPubMedGoogle Scholar
  12. 12.
    Wach JY, Gademann K (2012) Reduce to the maximum: truncated natural products as powerful modulators of biological processes. Synlett 2012:163–170. doi: 10.1055/s-0031-1290125 CrossRefGoogle Scholar
  13. 13.
    Feher M, Schmidt JM (2003) Property distribution: differences between drugs, natural products, and molecule from combinatorial chemistry. J Chem Inf Model 43:218–227. doi: 10.1021/ci0200467 Google Scholar
  14. 14.
    Hert J, Irwin JJ, Laggner C, Keiser MJ, Shoichet BK (2009) Quantifying biogenic bias in screening libraries. Nat Chem Biol 5:479–483. doi: 10.1038/nchembio.180 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schenone M, Dancik V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240. doi: 10.1038/nchembio.1199 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Correa MD, Galdames C, Stapf S (2004) Catálogo de plantas vasculares de Panamá. Editora Novo Art, SA, PanamáGoogle Scholar
  17. 17.
    Caballero-George C, Gupta MP (2011) A quarter century of pharmacognostic research on Panamanian flora: a review. Planta Med 77:1–14. doi: 10.1055/s-0030-1271187 CrossRefGoogle Scholar
  18. 18.
    Gupta MP, Marston A, Hostettman K (1999) Bioactive compounds from Panamanian plants. In: Hostettmann K, Gupta MP, Marston A (eds) Chemistry, biological and pharmacological properties of medicinal plants from the Americas. Harwood Academic Publishers, Newark, pp 143–159Google Scholar
  19. 19.
    Medina-Franco JL, Mayorga-Martínez K, Giulianotti MA, Houghten RA, Pinilla C (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Design 4:322–333. doi: 10.2174/157340908786786010 CrossRefGoogle Scholar
  20. 20.
    Reutlinger M, Schneider G (2012) Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. J Mol Graph Model 34:108–117. doi: 10.1016/j.jmgm.2011.12.006 CrossRefPubMedGoogle Scholar
  21. 21.
    González-Medina M, Prieto-Martínez FD, Owen JR, Medina-Franco JL (2016) Consensus diversity plots: a global diversity analysis of chemical libraries. J Cheminform 8:63. doi: 10.1186/s13321-016-0176-9 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Valli M, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I, Andricopulo AD, Bolzani VS (2013) Development of a natural products database from the biodiversity of Brazil. J Nat Prod 76:439–444. doi: 10.1021/np3006875 CrossRefPubMedGoogle Scholar
  23. 23.
    AnlytiCon. July 14, 2017)
  24. 24.
    Chen CY (2011) TCM database@Taiwan: the world’s largest traditional chinese medicine database for drug screening in silico. PLoS ONE 6:e15939. doi: 10.1371/journal.pone.0015939 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrian-Uhalte E, Davies M, Dedman N, Karlsson A, Magarinos MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945–d54. doi: 10.1093/nar/gkw1074 CrossRefPubMedGoogle Scholar
  26. 26.
    Molecular Operating Environment (MOE) 2014.08. Chemical computing group, Montreal. Accessed 14 July, 2017
  27. 27.
    Singh N, Sun H, Chaudhury S, AbdulHameed MDM, Wallqvist A, Tawa G (2012) A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space. J Cheminform 4:4. doi: 10.1186/1758-2946-4-4 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA. Accessed 14 July, 2017
  29. 29.
    Osolodkin DI, Radchenko EV, Orlov AA, Voronkov AE, Palyulin VA, Zefirov NS (2015) Progress in visual representations of chemical space. Expert Opin Drug Discov 10(9):959–973. doi: 10.1517/17460441 CrossRefPubMedGoogle Scholar
  30. 30.
    Ringner M (2008) What is principal component analysis? Nat Biotechnol 26:303–304. doi: 10.1038/nbt0308-303 CrossRefPubMedGoogle Scholar
  31. 31.
    Clemons PA, Wilson JA, Dančík V, Muller S, Carrinski HA, Wagner BK, Koehler AN, Schreiber SL (2011) Quantifying structure and performance diversity for sets of small molecules comprising small-molecule screening collections. Proc Natl Acad Sci USA 108:6817–6822. doi: 10.1073/pnas.1015024108 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Djuric SW, Akritopoulou-Zanze I, Cox PB, Galasinski S (2010) Compound collection enhancement and paradigms for high-throughput screening-an update. Annu Rep Med Chem 45:409–428. doi: 10.1016/S0065-7743(10)45025-3 CrossRefGoogle Scholar
  33. 33.
    Sander T, Freyss J, Von Korff M, Rufener C (2015) Datawarrior: An open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473. doi: 10.1021/ci500588j CrossRefPubMedGoogle Scholar
  34. 34.
    Rogers D, Brown R, Hahn M (2005) Using extended-connectivity fingerprints with laplacian-modified bayesian analysis in high-throughput screening. J Biomol Screen 10:682–686. doi: 10.1177/1087057105281365 CrossRefPubMedGoogle Scholar
  35. 35.
    Hert J, Willet P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuff enhauer A (2004) Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures. Org Biomol Chem 2:3256–3266. doi: 10.1039/B409865J CrossRefPubMedGoogle Scholar
  36. 36.
    Owen JR, Nabney IT, Medina-Franco JL, López-Vallejo F (2011) Visualization of molecular fingerprints. J Chem Inf Model 51:1552–1563. doi: 10.1021/ci1004042 CrossRefPubMedGoogle Scholar
  37. 37.
    Xu Y-J, Johnson M (2002) Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J Chem Inf Comput Sci 42:912–926. doi: 10.1021/ci025535l CrossRefPubMedGoogle Scholar
  38. 38.
    Xu Y-J, Johnson M (2001) Algorithm for naming molecular equivalence classes represented by labeled pseudographs. J Chem Inf Comput Sci 41:181–185. doi: 10.1021/ci0003911 CrossRefPubMedGoogle Scholar
  39. 39.
    Lopez-Vallejo F, Castillo R, Yepez-Mulia L, Medina-Franco JL (2011) Benzotriazoles and indazoles are scaffolds with biological activity against Entamoeba histolytica. J Biomol Screen 16:862–868. doi: 10.1177/1087057111414902 CrossRefPubMedGoogle Scholar
  40. 40.
    Hu Y, Bajorath J (2015) Quantifying the tendency of therapeutic target proteins to bind promiscuous or selective compounds. PLoS ONE 10:e0126838. doi: 10.1371/journal.pone.0126838 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF 3rd, Schenck RJ, Trippe AJ (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS registry. J Org Chem 73:4443–4451. doi: 10.1021/jo8001276 CrossRefPubMedGoogle Scholar
  42. 42.
    Krier M, Bret G, Rognan D (2006) Assessing the scaffold diversity of screening libraries. J Chem Inf Model 46:512–524. doi: 10.1021/ci050352v CrossRefPubMedGoogle Scholar
  43. 43.
    Medina-Franco JL, Martínez-Mayorga K, Bender A, Scior T (2009) Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb Sci 28:1551–1560. doi: 10.1002/qsar.200960069 CrossRefGoogle Scholar
  44. 44.
    González-Medina M, Owen J, El-Elimat T, Pearce C, Oberlies N, Figueroa M, Medina-Franco J (2017) Scaffold diversity of fungal metabolites. Front Pharmacol 8:180. doi: 10.3389/fphar.2017.00180 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Godden JW, Xue L, Bajorath J (2000) Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. J Chem Inf Comput Sci 40:163–166. doi: 10.1021/ci990316u
  46. 46.
    Lovering F, Bikker J, Humblet C (2009) Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem 52:6752–6756. doi: 10.1021/jm901241e
  47. 47.
    González-Medina M, Prieto-Martínez FD, Naveja J, Méndez-Lucio O, El-Elimat T, Pearce CJ, Oberlies NH, Figueroa M, Medina-Franco JL (2016) Chemoinformatic expedition of the chemical space of fungal products. Future Med Chem 8:1399–1412. doi: 10.4155/fmc-2016-0079 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Clemons PA, Bodycombe NE, Carrinski HA, Wilson JA, Shamji AF, Wagner BK, Koehler AN, Schreiber SL (2010) Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc Natl Acad Sci USA 107:18787–18792. doi: 10.1073/pnas.1012741107 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Meyer AY (1986) Molecular mechanics and molecular shape. III. Surface area and cross-sectional areas of organic molecules. J Comput Chem 7:144–152. doi: 10.1002/jcc.540070207 CrossRefPubMedGoogle Scholar
  50. 50.
    Sauer WHB, Schwarz MK (2003) Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J Chem Inf Comput Sci 43:987–1003. doi: 10.1021/ci025599w CrossRefPubMedGoogle Scholar
  51. 51.
    Méndez-Lucio O, Medina-Franco JL (2017) The many roles of molecular complexity in drug discovery. Drug Discov Today 22:120–126. doi: 10.1016/j.drudis.2016.08.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CIFLORPAN, Center for Pharmacognostic Research on Panamanian Flora, College of PharmacyUniversity of PanamaPanama CityRepublic of Panama
  2. 2.Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations