Molecular Diversity

, Volume 21, Issue 1, pp 247–255 | Cite as

A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles

  • Suresh Maddila
  • Kranthi Kumar Gangu
  • Surya Narayana Maddila
  • Sreekantha B. JonnalagaddaEmail author
Short Communication


A simple and versatile one-pot three-component synthetic protocol is devised for heterocycles, viz. 2,6-diamino-4-substituted-4H-pyran-3,5-dicarbonitrile derivatives, in short reaction times (\(\approx \)30 min) at room temperature using ethanol as a solvent. This method involves the three-component reaction of malononitrile, substituted aldehydes, and cyanoacetamide catalyzed by chitosan-doped calcium hydroxyapatites (CS/CaHAps) giving good to excellent yields (86–96%). Twelve new pyran derivatives (4al) were synthesized and their structures were established and confirmed by different spectroscopic methods (\(^{1}\)H NMR, \(^{13}\)C NMR, \(^{15}\)N NMR, and HRMS). The heterogeneous catalyst, CS/CaHAp, was characterized by various instrumental techniques including XRD, TEM, SEM, and FT-IR and TGA spectroscopies. The catalyst was easily separable and reusable for up to six runs without any apparent loss of activity. The reported protocol has many benefits, such as ease of preparation, use of a green solvent, reduced reaction times, excellent product yields, and operational simplicity.

Graphical Abstract


Green synthesis Pyrans Multicomponent reactions MCRs Heterogeneous catalyst Chitosan Hydroxyapatite Recyclability 



The authors are thankful to the National Research Foundation (NRF) of South Africa and University of KwaZulu-Natal, Durban, for financial support and research facilities.

Supplementary material

11030_2016_9708_MOESM1_ESM.doc (2.6 mb)
Supplementary material 1 (doc 2667 KB)


  1. 1.
    Manoj BG, Vasco DBB, Rafael L, Paula SB, Rajender SV (2013) Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem Soc Rev 42:5522–5551. doi: 10.1039/c3cs60025d CrossRefGoogle Scholar
  2. 2.
    D’Souza DM, Muller TJJ (2007) Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 36:1095–1108. doi: 10.1039/b608235c CrossRefPubMedGoogle Scholar
  3. 3.
    Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975. doi: 10.1039/c4gc00013g CrossRefGoogle Scholar
  4. 4.
    Toure BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486. doi: 10.1021/cr800296p CrossRefPubMedGoogle Scholar
  5. 5.
    Gu Y, Jerome F (2010) Glycerol as a sustainable solvent for green chemistry. Green Chem 12:1127–1138. doi: 10.1039/c001628d CrossRefGoogle Scholar
  6. 6.
    Maddila SN, Maddila S, Van Zyl WE, Jonnalagadda SB (2015) Mn doped \({\rm ZrO}_{2}\) as a green, efficient and reusable heterogeneous catalyst for the multicomponent synthesis of pyrano[2,3-d]-pyrimidine derivatives. RSC Adv 5:37360–37366. doi: 10.1039/c5ra06373f CrossRefGoogle Scholar
  7. 7.
    Corma A, Garcia H, Llabres FX, Xamena I (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655. doi: 10.1021/cr9003924 CrossRefPubMedGoogle Scholar
  8. 8.
    Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278. doi: 10.1039/b418069k CrossRefGoogle Scholar
  9. 9.
    Sheldon RA (2014) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451. doi: 10.1039/c1cs15219j CrossRefGoogle Scholar
  10. 10.
    Shuhei O, Ayumu O, Kazumichi Y (2008) Hydrothermal synthesis of vanadate- substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl Catal A Gen 348:129–134. doi: 10.1016/j.apcata.2008.06.035 CrossRefGoogle Scholar
  11. 11.
    Maddila SN, Maddila S, van Zyl WE, Jonnalagadda SB (2016) Ru-hydroxyapatite: an efficient and reusable catalyst for the multicomponent synthesis of pyranopyrazoles under facile green conditions. Curr Org Synth 13:2125–2133. doi: 10.2174/1385272820666160530104140 CrossRefGoogle Scholar
  12. 12.
    Sugiyama S, Miyamoto T, Hayashi H, Moffat JB (1998) Effects of non-stoichiometry of calcium and strontium hydroxyapatites on the oxidation of ethane in the presence of tetrachloromethane. J Mol Catal A Chem 135:199–208. doi: 10.1016/S1381-1169(97)00305-1 CrossRefGoogle Scholar
  13. 13.
    Gruselle M (2015) Apatites: a new family of catalysts in organic synthesis. J Organomet Chem 793:93–101. doi: 10.1016/j.jorganchem.2015.01.018 CrossRefGoogle Scholar
  14. 14.
    Pillai MK, Singh S, Jonnalagadda SB (2010) Solvent-free Knoevenagel condensation over cobalt hydroxyapatite. Syn Commun 41:3710–3715. doi: 10.1080/00397910903531714 CrossRefGoogle Scholar
  15. 15.
    Singh S, Jonnalagadda SB (2008) Selective oxidation of n-pentane over V\(_{2}\)O\(_{5}\) supported on hydroxyapatite. Catal Lett 126:200–206. doi: 10.1007/s10562-008-9607-1 CrossRefGoogle Scholar
  16. 16.
    Mondelli C, Ferri D, Baiker A (2008) Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol: an in situ ATR-IR spectroscopy study. J Catal 258:170–176. doi: 10.1016/j.jcat.2008.06.011 CrossRefGoogle Scholar
  17. 17.
    Zeng M, Yuan X, Yang Z, Qi C (2014) Novel macroporous palladium cation crosslinked chitosan membranes for heterogeneous catalysis application. Inter J Biolog Macromol 68:189–197. doi: 10.1016/j.ijbiomac.2014.04.035 CrossRefGoogle Scholar
  18. 18.
    Pinho MT, Silva AMT, Fathy NA, Attia AA, Gomes HT, Faria JL (2015) Activated carbon xerogel-chitosan composite materials for catalytic wet peroxide oxidation under intensified process conditions. J Environ Chem Eng 3:1243–1251. doi: 10.1016/j.jece.2014.10.020 CrossRefGoogle Scholar
  19. 19.
    Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, Leo CD, Jandt KD, Keller TF (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A Gen 379:30–37. doi: 10.1016/j.apcata.2010.02.029 CrossRefGoogle Scholar
  20. 20.
    Guibal E (2005) Heterogeneous catalysis on chitosan-based materials. Prog Polym Sci 30:71–109. doi: 10.1016/j.progpolymsci.2004.12.001 CrossRefGoogle Scholar
  21. 21.
    Crini G, Badot P (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447. doi: 10.1016/j.progpolymsci.2007.11.001 CrossRefGoogle Scholar
  22. 22.
    Kar S, Kaur T, Thirugnanam A (2016) Microwave-assisted synthesis of porous chitosan-modified montmorillonite-hydroxyapatite composite scaffolds. Int J Biol Macromol 82:628–636. doi: 10.1016/j.ijbiomac.2015.10.060 CrossRefPubMedGoogle Scholar
  23. 23.
    Kithva P, Grondahl L, Martina D, Trau M (2010) Biomimetic synthesis and tensile properties of nanostructured high volume fraction hydroxyapatite and chitosan biocomposite films. J Mate Chem 20:381–389. doi: 10.1039/b914798e CrossRefGoogle Scholar
  24. 24.
    Suresh L, Poornachandra Y, Kanakaraju S, Ganesh Kumar C, Chandramouli GV (2015) One-pot three-component domino protocol for the synthesis of novel pyrano[2,3-d]pyrimidines as antimicrobial and anti-biofilm agents. Org Biomol Chem 13:7294–306. doi: 10.1039/c5ob00693g CrossRefPubMedGoogle Scholar
  25. 25.
    Bedair AH, El-Hady NA, El-Latif MSA, Fakery AH, El-Agrody AM (2000) 4-Hydroxycoumarin in heterocyclic synthesis: part III. Synthesis of some new pyrano[2,3- d]pyrimidine, 2-substituted[1,2,4]triazolo[1,5-c]pyrimidine and pyrimido[1,6-b][1,2,4]-triazine derivatives. Farmaco 55:708–714. doi: 10.1016/S0014-827X(00)00097-5 CrossRefPubMedGoogle Scholar
  26. 26.
    Mohareb RM, Zaki MY, Abbas NS (2015) Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids 98:80–91. doi: 10.1016/j.steroids.2015.03.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Queiroz RP, Calhelha RC, Vale-Silva LA, Pinto E, Nascimento SJ (2009) Synthesis of novel 3-(aryl) benzothieno [2,3-c]-pyran-1-ones from Sonogashira products and intramolecular cyclization: antitumoral activity evaluation. Euro J Med Chem 44:1893–1899. doi: 10.1016/j.ejmech.2008.11.002 CrossRefGoogle Scholar
  28. 28.
    Aytemir MD, Qzçelik BA (2010) Study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. Eur J Med Chem 45:4089–4095. doi: 10.1016/j.ejmech.2010.05.069 CrossRefPubMedGoogle Scholar
  29. 29.
    Kuo SC, Huang LJ, Nakamura H (1984) Studies on heterocyclic compounds. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano-[2,3-c]-pyrazol-6-one derivatives. J Med Chem 27:539–544. doi: 10.1021/jm00370a020 CrossRefPubMedGoogle Scholar
  30. 30.
    Saundane AR, Vijaykumar K, Vaijinath AV (2013) Synthesis of novel 2-amino-4-(5’-substituted 2’-phenyl-1H-indol-3’-yl)-6-aryl-4H-pyran-3-carbonitrile derivatives as antimicrobial and antioxidant agents. Bioorg Med Chem Lett 23:1978–1984. doi: 10.1021/jm00370a020 CrossRefPubMedGoogle Scholar
  31. 31.
    Leon LG, Miranda PO, Martin VS, Padron JI, Padron JM (2007) Antiproliferative activity of 4-chloro-5,6-dihydro-2 H-pyrans. Part 2: enhancement of drug cytotoxicity. Bioorg Med Chem Lett 17:3087–3090. doi: 10.1016/j.bmcl.2007.03.045 CrossRefPubMedGoogle Scholar
  32. 32.
    Kakimoto T, Koizumi F, Hirase K, Banba S, Tanaka E, Arai K (2004) Novel 3,\(3\alpha \),5, \(9{\upbeta }\)-tetrahydro-2H-furo[3,2-c][2]-benzopyran derivatives: synthesis of chiral glycol benzyl ether herbicides. Pest Manag Sci 60:493–500. doi: 10.1002/ps.838 CrossRefPubMedGoogle Scholar
  33. 33.
    Xie L, Takeuchi Y, Cosentino LM, Mc Phail AT, Lee KHJ (2001) Anti-AIDS agents. Synthesis and anti-HIV activity of disubstituted (3’R,4’R)-3’,4’-di-O-(S)-camphanoyl-(+)-cis-khellactone analogues. J Med Chem 44:664–671. doi: 10.1021/jm000070g CrossRefPubMedGoogle Scholar
  34. 34.
    Devi I, Bhuyan PJ (2004) Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions. Tetrahedron Lett 45:8625–8627. doi: 10.1016/j.tetlet.2004.09.158 CrossRefGoogle Scholar
  35. 35.
    Ming H, Sai-Sai X, Neng J, Jin-Shuai L, Ling-Yi K, Xiao-Bing W (2015) Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-\({\upbeta }\)-amyloid (A\(\upbeta )\) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg Med Chem Lett 25:508–513. doi: 10.1016/j.bmcl.2014.12.034 CrossRefGoogle Scholar
  36. 36.
    Heravi MM, Jani BA, Derikvand F, Bamoharram FF, Oskooie HA (2008) Three component, one-pot synthesis of dihydropyrano-[3,2-c]-chromene derivatives in the presence of H\(_{6}\)P\(_{2}\)W\(_{18}\)O\(_{62}\cdot \)18H\(_{2}\)O as a green and recyclable catalyst. Cat Commun 10:272–275. doi: 10.1016/j.catcom.2008.08.023 CrossRefGoogle Scholar
  37. 37.
    Elnagdi NMH, Al-Hokbany NS (2012) Organocatalysis in synthesis: \({{l}}\)-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules 17:4300–4312. doi: 10.3390/molecules17044300 CrossRefPubMedGoogle Scholar
  38. 38.
    Peng Y, Song G, Huang F (2005) Tetramethylguanidine-[bmim][BF\(_{4}\)]. An efficient and recyclable catalytic system for one-pot synthesis of 4H-pyrans. Monatsh Chem 136:727–731. doi: 10.1080/17518253.2012.691183 CrossRefGoogle Scholar
  39. 39.
    Davoodnia A, Allameh S, Fazil S, Tavakoli-Hoseini N (2011) One-pot synthesis of 2-amino- 3-cyano-4-arylsubstituted tetrahydrobenzo[\({\upbeta }\)]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO\(_{2}\)) as an efficient and reusable catalyst. Chem Pap 65:714–720. doi: 10.2478/s11696-011-0064-8 CrossRefGoogle Scholar
  40. 40.
    Jin TS, Wang AQ, Wang X, Zhang JS, Li TS (2004) A clean one-pot synthesis of tetrahydrobenzo-[\(\upbeta \)]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synlett 871–873. Doi: 10.1055/s-2004-820025
  41. 41.
    Gao S, Tsai CH, Tseng C, Yao C-F (2008) Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron 64:9143–9149. doi: 10.1016/j.tet.2008.06.061 CrossRefGoogle Scholar
  42. 42.
    Maddila S, Rana S, Pagadala R, Kankala S, Maddila SN, Jonnalagadda SB (2015) Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO\(_{2}\) as recyclable catalyst. Catal Commun 61:26–30. doi: 10.1016/j.catcom.2014.12.005 CrossRefGoogle Scholar
  43. 43.
    Shabalala S, Maddila S, Van Zyl WE, Jonnalagadda SB (2016) A facile, efficacious and reusable Sm\(_{2}\)O\(_{3}\)/ZrO\(_{2}\) catalyst for the novel synthesis of functionalized 1,4-dihydropyridine derivatives. Catal Commun 79:21–25. doi: 10.1016/j.catcom.2016.02.017 CrossRefGoogle Scholar
  44. 44.
    Maddila SN, Maddila S, Van Zyl WE, Jonnalagadda SB (2016) Ceria-vanadia/silica-catalyzed cascade for C-C and C-O bond activation: green one-pot synthesis of 2-amino-3-cyano-4H-pyrans. Chem Open 5:38–42. doi: 10.1002/open.201500159 Google Scholar
  45. 45.
    Maddila S, Rana S, Pagadala R, Jonnalagadda SB (2015) Mg-V/CO\(_{3}\) Hydrotalcite: an efficient and reusable catalyst for one-pot synthesis of multisubstituted pyridines. Res Chem Intermed 41:8269–8278. doi: 10.1007/s11164-014-1890-4 CrossRefGoogle Scholar
  46. 46.
    Maddila S, Naicker K, Gorle S, Rana S, Kotaiah Y, Maddila SN, Singh M, Singh P, Jonnalagadda SB (2016) New pyrano[2,3-d:6,5-d’]dipyrimidine derivatives—synthesis, in vitro cytotoxicity activity and computational studies. Anti-Cancer Agents in Med Chem 16:1031–1037. doi: 10.2174/1871520616666151123095932 CrossRefGoogle Scholar
  47. 47.
    Maddila S, Naicker K, Momin M, Rana S, Gorle S, Maddila SN, Kotaiah Y, Singh M, Jonnalagadda SB (2016) Novel 2-(1-(substitutedbenzyl)-1H-tetrazol-5-yl)-3-phenylacrylonitrile derivatives: synthesis, in vitro antitumor activity and computational studies. Med Chem Res 25:283–291. doi: 10.1007/s00044-015-1482-x CrossRefGoogle Scholar
  48. 48.
    Maddila S, Pagadala R, Jonnalagadda SB (2015) Synthesis and insecticidal activity of tetrazole linked triazole derivatives. J Heterocyc Chem 52:487–499. doi: 10.1002/jhet.2078 CrossRefGoogle Scholar
  49. 49.
    Maddila S, Gorle S, Singh M, Lavanya P, Jonnalagadda SB (2013) Synthesis and anti-inflammatory activity of fused 1,2,4-triazolo-[3,4-b][1,3,4] thiadiazole derivatives of phenothiazine. Lett Drug Des Discov 10:977–983. doi: 10.2174/15701808113109990034 CrossRefGoogle Scholar
  50. 50.
    Maddila S, Jonnagadda SB (2013) Synthesis and antimicrobial activity of new 1,3,4-thiadiazoles containing oxadiazole, thiadiazole and triazole nuclei. Pharmaceu Chem J 46: 661. Doi: 10.1007/s11094-013-0865-x
  51. 51.
    Maddila S, Lavanya P, Rao CV (2016) Synthesis and pharmacological evaluation of novel 2H/6H-thiazolo-[3’,2’:2,3][1,2,4]triazolo[1,5-a]pyridine-9-carbonitrile derivatives. Arab J Chem 9:136–142. doi: 10.1016/j.arabjc.2011.02.004 CrossRefGoogle Scholar
  52. 52.
    Maddila S, Jonnalagadda SB (2013) New class of pyrimidinesulfamoyl containing pyrazole and pyrrole derivatives and their antioxidant activity. Lett Org Chem 10:374–379. doi: 10.2174/1570178611310050013 CrossRefGoogle Scholar
  53. 53.
    Anjaneyulu U, Swaroop VK, Vijayalakshmi U (2016) Preparation and characterization of novel Ag doped hydroxyapatite-Fe\(_{3}\)O\(_{4}\)-chitosan hybrid composites and in vitro biological evaluations for orthopaedic applications. RSC Adv 6:10997–11007. doi: 10.1039/c5ra21479c CrossRefGoogle Scholar
  54. 54.
    Cai TX, Chen L, Jiang T, Shen X, Hu J, Tong H (2011) Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem 21:12015–12025. doi: 10.1039/c1jm11503k CrossRefGoogle Scholar
  55. 55.
    Wang UH, Sun K, Li A, Wang W, Chui P (2011) Size-controlled synthesis and characterization of fluorapatite nanocrystals in the presence of gelatin. Powder Technol 209:9–14. doi: 10.1016/j.powtec.2011.01.020 CrossRefGoogle Scholar
  56. 56.
    Wu VYS, Lee YH, Chang HC (2009) Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method. Mater Sci Eng C 29:237–241. doi: 10.1016/j.msec.2008.06.018 CrossRefGoogle Scholar
  57. 57.
    Shavandi A, Bekhit AA, Ali MA, Sun Z, Gould M (2015) Development and characterization of hydroxyapatite/\({\upbeta }\)-TCP/chitosan composites for tissue engineering applications. Mater Sci Eng C 56:481–493. doi: 10.1016/j.msec.2015.07.004
  58. 58.
    Paulino XAT, Simionato JI, Garcia JC, Nozaki J (2006) Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydr Polym 64:98–103. doi: 10.1016/j.carbpol.2005.10.032 CrossRefGoogle Scholar
  59. 59.
    Katti YKS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:1–12. doi: 10.1088/1748-6041/3/3/034122 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Chemistry & PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations