Molecular Diversity

, Volume 19, Issue 3, pp 551–561 | Cite as

Psoralen derivatives as inhibitors of NF-\(\upkappa \hbox {B/DNA}\) interaction: the critical role of the furan ring

  • Giovanni Marzaro
  • Ilaria Lampronti
  • Monica Borgatti
  • Paolo Manzini
  • Roberto Gambari
  • Adriana Chilin
Short Communication


Simplified analogues of previously reported NF-\(\upkappa \hbox {B/DNA}\) interaction inhibitors, lacking the furan moiety, were synthesized and evaluated by performing experiments based on electrophoretic mobility shift assay (EMSA). The synthetic modifications led to simpler coumarin derivatives with lower activity allowing to better understand the minimal structural requirement for the binding to NF-\(\upkappa \hbox {B}\).

Graphical abstract


Coumarin derivatives Psoralen NF-\(\upkappa \hbox {B}\) Transcription 3D-QSAR 



The project was supported by Telethon (GGP10124), CIB (Consorzio Interuniversitario di Biotecnologie) and FFC (Italian Cystic Fibrosis Research Foundation, contract FFC#2/2010).

Supplementary material

11030_2015_9586_MOESM1_ESM.pdf (340 kb)
Supplementary material 1 (pdf 341 KB)


  1. 1.
    Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Tamanini A, Cabrini G (2010) Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor \(\kappa \)-\(\text{ B }\): inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem Pharmacol 80:1887–1894. doi: 10.1016/j.bcp.2010.06.047 PubMedCrossRefGoogle Scholar
  2. 2.
    Bezzerri V, Borgatti M, Finotti A, Tamanini A, Gambari R, Cabrini G (2011) Mapping the transcriptional machinery of the IL-8 gene in human bronchial epithelial cells. J Immunol 187:6069–6081. doi: 10.1016/j.bcp.2010.06.047 PubMedCrossRefGoogle Scholar
  3. 3.
    van den Berg R, Haenen GR, van den Berg H, Bast A (2001) Transcription factor NF-kappaB as a potential biomarker for oxidative stress. Br J Nutr 86(Suppl 1):S121–127PubMedCrossRefGoogle Scholar
  4. 4.
    Zubair A, Frieri M (2013) Role of nuclear factor-kB in breast and colorectal cancer. Curr Allergy Asthma Rep 13:44–49. doi: 10.1016/j.bcp.2010.06.047 PubMedCrossRefGoogle Scholar
  5. 5.
    DiDonato JA, Mercurio F, Karin M (2012) NF-kappaB and the link between inflammation and cancer. Immunol Rev 246:379–400. doi: 10.1111/j.1600-065X.2012.01099.x PubMedCrossRefGoogle Scholar
  6. 6.
    Perkins ND (2012) The diverse and complex roles of NF-kappaB subunits in cancer. Nat Rev Cancer 12:121–132. doi: 10.1038/nrc3204 PubMedGoogle Scholar
  7. 7.
    McMillan DH, Woeller CF, Thatcher TH, Spinelli SL, Maggirwar SB, Sime PJ, Phipps RP (2013) Attenuation of inflammatory mediator production by the NF-kappaB member RelB is mediated by microRNA-146a in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 304:L774–781. doi: 10.1152/ajplung.00352.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S (2013) NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 228:1433–1442. doi: 10.1002/jcp.24296 PubMedCrossRefGoogle Scholar
  9. 9.
    Tan G, Niu J, Shi Y, Ouyang H, Wu ZH (2012) NF-kappaB-dependent microRNA-125b up-regulation promotes cell survival by targeting p38alpha upon ultraviolet radiation. J Biol Chem 287:33036–33047. doi: 10.1074/jbc.M112.383273 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Rathore MG, Saumet A, Rossi JF, de Bettignies C, Tempe D, Lecellier CH, Villalba M (2012) The NF-kappaB member p65 controls glutamine metabolism through miR-23a. Int J Biochem Cell Biol 44:1448–1456. doi: 10.1016/j.biocel.2012.05.011 PubMedCrossRefGoogle Scholar
  11. 11.
    Galardi S, Mercatelli N, Farace MG, Ciafre SA (2011) NF-\(\kappa \)B and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res 39:3892–3902. doi: 10.1093/nar/gkr006 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Gambari R, Borgatti M, Lampronti I, Fabbri E, Brognara E, Bianchi N, Piccagli L, Yuen MC, Kan CW, Hau DK, Fong WF, Wong WY, Wong RS, Chui CH (2012) Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3-1 cells. Int Immunopharmacol 13:308–315. doi: 10.1016/j.intimp.2012.04.010 PubMedCrossRefGoogle Scholar
  13. 13.
    Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB, Ghnaim H, Berger M (1995) Inflammatory cytokines in cystic fibrosis lungs. Am J Respir Crit Care Med 152:2111–2118. doi: 10.1164/ajrccm.152.6.852078 PubMedCrossRefGoogle Scholar
  14. 14.
    De Rose V (2002) Mechanisms and markers of airway inflammation in cystic fibrosis. Eur Respir J 19:333–340. doi: 10.1183/09031936.02.00229202 PubMedCrossRefGoogle Scholar
  15. 15.
    Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, Bianchi N, Mischiati C, Pedone C, Gambari R (2002) Cationic liposomes as delivery systems for double-stranded PNA–DNA chimeras exhibiting decoy activity against NF-kappaB transcription factors. Biochem Pharmacol 64:609–616. doi: 10.1016/S0006-2952(02)01188-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Romanelli A, Pedone C, Saviano M, Bianchi N, Borgatti M, Mischiati C, Gambari R (2001) Molecular interactions with nuclear factor kappaB (NF-kappaB) transcription factors of a PNA–DNA chimera mimicking NF-kappaB binding sites. Eur J Biochem 268:6066–6075. doi: 10.1046/j.0014-2956.2001.02549.x PubMedCrossRefGoogle Scholar
  17. 17.
    Uddin MN, Patel NJ, Bhowmik T, D’Souza B, Akalkotkar A, Etzlar F, Oettinger CW, D’Souza M (2013) Enhanced bioavailability of orally administered antisense oligonucleotide to nuclear factor kappa B mRNA after microencapsulation with albumin. J Drug Target 21:450–457. doi: 10.3109/1061186X.2013.765440 PubMedCrossRefGoogle Scholar
  18. 18.
    Li Z, de Zhang K, Yi WQ, Ouyang Q, Chen YQ, Gan HT (2008) NF-kappaB p65 antisense oligonucleotides may serve as a novel molecular approach for the treatment of patients with ulcerative colitis. Arch Med Res 39:729–734. doi: 10.1016/j.arcmed.2008.08.001 PubMedCrossRefGoogle Scholar
  19. 19.
    Gambari R, Feriotto G, Rutigliano C, Bianchi N, Mischiati C (2000) Biospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs. J Pharmacol Exp Ther 294:370–377PubMedGoogle Scholar
  20. 20.
    Shin DH, Park KW, Wu LC, Hong JW (2011) ZAS3 promotes TNFalpha-induced apoptosis by blocking NFvarkappaB-activated expression of the anti-apoptotic genes TRAF1 and TRAF2. BMB Rep 44:267–272. doi: 10.5483/BMBRep.44.4.267 PubMedCrossRefGoogle Scholar
  21. 21.
    Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A, Brognara E, Bianchi N, Manicardi A, Marchelli R, Corradini R (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82:1416–1429. doi: 10.1016/j.bcp.2011.08.007 PubMedCrossRefGoogle Scholar
  22. 22.
    Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A, Bianchi N, Sforza S, Tedeschi T, Manicardi A, Marchelli R, Corradini R, Gambari R (2011) miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics 3:733–745. doi: 10.2217/epi.11.90 PubMedCrossRefGoogle Scholar
  23. 23.
    Morishita R, Ogiwara T, Sugimoto T, Maeda K, Kawamura I, Chiba T (2001) Remedy for diseases associated with NF-\(\kappa \text{ B }\). US Patent US6262033Google Scholar
  24. 24.
    Callahan JF, Chabot-Fletcher MC (2002) Inhibitors of transcription factor-NF-\(\kappa \text{ B }\). US Patent US6492425Google Scholar
  25. 25.
    Baldwin AS, Cusack JC, Mayo MW, Wang CY (2010) Use of NF-\(\kappa \text{ B }\) inhibition in combination therapy for cancer. US Patent US7700073Google Scholar
  26. 26.
  27. 27.
    Marzaro G, Guiotto A, Borgatti M, Finotti A, Gambari R, Breveglieri G, Chilin A (2013) Psoralen derivatives as inhibitors of NF-kappaB/DNA interaction: synthesis, molecular modeling, 3D-QSAR, and biological evaluation. J Med Chem 56:1830–1842. doi: 10.1021/jm3009647 PubMedCrossRefGoogle Scholar
  28. 28.
    Bhattacharyya SS, Paul S, Mandal SK, Banerjee A, Boujedaini N, Khuda-Bukhsh AR (2009) A synthetic coumarin (4-methyl-7 hydroxy coumarin) has anti-cancer potentials against DMBA-induced skin cancer in mice. Eur J Pharmacol 614:128–136. doi: 10.1016/j.ejphar.2009.04.015 PubMedCrossRefGoogle Scholar
  29. 29.
    Goel A, Prasad AK, Parmar VS, Ghosh B, Saini N (2009) Apoptogenic effect of 7,8-diacetoxy-4-methylcoumarin and 7,8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: role of NF-kappaB, Akt, ROS and MAP kinase pathway. Chem Biol Interact 179:363–374. doi: 10.1016/j.cbi.2008.10.060
  30. 30.
    Chuang JY, Huang YF, Lu HF, Ho HC, Yang JS, Li TM, Chang NW, Chung JG (2007) Coumarin induces cell cycle arrest and apoptosis in human cervical cancer HeLa cells through a mitochondria- and caspase-3 dependent mechanism and NF-kappaB down-regulation. In vivo 21:1003–1009PubMedGoogle Scholar
  31. 31.
    Kim EK, Kwon KB, Shin BC, Seo EA, Lee YR, Kim JS, Park JW, Park BH, Ryu DG (2005) Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor kappaB and caspase-3. Life Sci 77:824–836. doi: 10.1016/j.lfs.2005.02.003 PubMedCrossRefGoogle Scholar
  32. 32.
    Wang Y, Li CF, Pan LM, Gao ZL (2013) 7,8-Dihydroxycoumarin inhibits A549 human lung adenocarcinoma cell proliferation by inducing apoptosis via suppression of Akt/NF-kappaB signaling. Exp Ther Med 5:1770–1774. doi: 10.3892/etm.2013.1054 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Zhao L, Tao JY, Zhang SL, Pang R, Jin F, Dong JH, Guo YJ (2007) Inner anti-inflammatory mechanisms of petroleum ether extract from Melilotus suaveolens Ledeb. Inflammation 30:213–223. doi: 10.1007/s10753-007-9039-x PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang XY, Tao JY, Zhao L, Huang ZJ, Xiong FL, Zhang SL, Li CM, Xiao F (2007) In vitro anti-inflammatory effects of different solution fractions of ethanol extract from Melilotus suaveolens Ledeb. Chin Med J 120:1992–1998PubMedGoogle Scholar
  35. 35.
    Raghav SK, Gupta B, Shrivastava A, Das HR (2007) Inhibition of lipopolysaccharide-inducible nitric oxide synthase and IL-1\(\beta \) through suppression of NF-kappaB activation by 3-(1\(^{\prime }\)-1\(^{\prime }\)-dimethyl-allyl)-6-hydroxy-7-methoxy-coumarin isolated from Ruta graveolens L. Eur J Pharmacol 560:69–80. doi: 10.1016/j.ejphar.2007.01.002 PubMedCrossRefGoogle Scholar
  36. 36.
    Tao JY, Zheng GH, Zhao L, Wu JG, Zhang XY, Zhang SL, Huang ZJ, Xiong FL, Li CM (2009) Anti-inflammatory effects of ethyl acetate fraction from Melilotus suaveolens Ledeb on LPS-stimulated RAW 264.7 cells. J Ethnopharmacol 123:97–105. doi: 10.1016/j.jep.2009.02.024 PubMedCrossRefGoogle Scholar
  37. 37.
    Appendino G, Maxia L, Bascope M, Houghton PJ, Sanchez-Duffhues G, Munoz E, Sterner O (2006) A meroterpenoid NF-kappaB inhibitor and drimane sesquiterpenoids from Asafoetida. J Nat Prod 69:1101–1104. doi: 10.1021/np0600954 PubMedCrossRefGoogle Scholar
  38. 38.
    Moon PD, Lee BH, Jeong HJ, An HJ, Park SJ, Kim HR, Ko SG, Um JY, Hong SH, Kim HM (2007) Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IkappaB/NF-kappaB signal cascade in the human mast cell line HMC-1. Eur J Pharmacol 555:218–225. doi: 10.1016/j.ejphar.2006.10.021 PubMedCrossRefGoogle Scholar
  39. 39.
    Veselovskaya MV, Shilin SV, Garazd MM, Khilya VP (2003) Modified coumarins. 9. Synthesis of amino-acid derivatives of 3-(2,3,5-trimethyl-7-oxofuro[3,2-g]chromen-6-yl)propanoic acid. Chem Nat Compd 39:177–181. doi: 10.1023/A:1024861830143 CrossRefGoogle Scholar
  40. 40.
    Nagorichna IV, Dubovik IP, Garazd MM, Khilya VP (2003) Modified coumarins. 10. Synthesis of substituted 2-(7-oxofuro[3,2-g]chromen-6-yl)acetic acids. Chem Nat Compd 39:253–261. doi: 10.1023/A:1025466317733 CrossRefGoogle Scholar
  41. 41.
    Borgatti M, Chilin A, Piccagli L, Lampronti I, Bianchi N, Mancini I, Marzaro G, dall’Acqua F, Guiotto A, Gambari R (2011) Development of a novel furocoumarin derivative inhibiting NF-kappaB dependent biological functions: design, synthesis and biological effects. Eur J Med Chem 46:4870–4877. doi: 10.1016/j.ejmech.2011.07.032 PubMedCrossRefGoogle Scholar
  42. 42.
    Piccagli L, Fabbri E, Borgatti M, Bianchi N, Bezzerri V, Mancini I, Nicolis E, Dechecchi CM, Lampronti I, Cabrini G, Gambari R (2009) Virtual screening against p50 NF-kappaB transcription factor for the identification of inhibitors of the NF-kappaB-DNA interaction and expression of NF-kappaB upregulated genes. ChemMedChem 4:2024–2033. doi: 10.1002/cmdc.200900362 PubMedCrossRefGoogle Scholar
  43. 43.
    Perola E, Charifson PS (2004) Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. J Med Chem 47:2499–2510. doi: 10.1021/jm030563w PubMedCrossRefGoogle Scholar
  44. 44.
    Garazd MM, Garazd Ia L, Ogorodniichuk AS, Khilia VP (2004) Synthesis of modified psoralen analogues. Bioorg Khim 30:324–333. doi: 10.1023/B:RUBI.0000030137.88504.10 PubMedGoogle Scholar
  45. 45.
    Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, Bianchi N, Mischiati C, Pedone C, Gambari R (2002) Cationic liposomes as delivery systems for double-stranded PNA-DNA chimeras exhibiting decoy activity against NF-kappa B transcription factors. Biochem Pharmacol 64:609–616. doi: 10.1016/S0006-2952(02)01188-7 PubMedCrossRefGoogle Scholar
  46. 46.
    Feriotto G, Mischiati C, Gambari R (1994) Sequence-specific recognition of the HIV-1 long terminal repeat by distamycin—a DNAase-I footprinting study. Biochem J 299:451–458PubMedCentralPubMedGoogle Scholar
  47. 47.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi: 10.1002/jcc.20084 PubMedCrossRefGoogle Scholar
  48. 48.
    Granovsky AA F (2014) version 7.1.G; Accessed 15 May
  49. 49.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic-structure system. J Comput Chem 14:1347–1363. doi: 10.1002/jcc.540141112 CrossRefGoogle Scholar
  50. 50.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4:17. doi: 10.1186/1758-2946-4-17 CrossRefGoogle Scholar
  51. 51.
    Marvin v, Program B; ChemAxon: Budapest, Hungary; Accessed 15 May 2014
  52. 52.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminformatics 3:33. doi: 10.1186/1758-2946-3-33 CrossRefGoogle Scholar
  53. 53.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi: 10.1002/jcc.21256 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Accelrys Software Inc. DSMe, Release 3.1, San Diego: Accelrys Software Inc., 2013. Accessed 15 May 2014Google Scholar
  55. 55.
    Tosco P, Balle T (2011) Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J Mol Model 17:201–208. doi: 10.1007/s00894-010-0684-x PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly
  2. 2.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
  3. 3.Biotechnology CenterUniversity of FerraraFerraraItaly

Personalised recommendations