Molecular Diversity

, Volume 19, Issue 2, pp 321–332 | Cite as

Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions

  • Ramin Ekhteiari Salmas
  • Mine Yurtsever
  • Matthias Stein
  • Serdar Durdagi
Full-Length Paper


Homology model structures of the dopamine D2 receptor (D2R) were generated starting from the active and inactive states of \(\upbeta \)2-adrenergic crystal structure templates. To the best of our knowledge, the active conformation of D2R was modeled for the first time in this study. The homology models are built and refined using MODELLER and ROSETTA programs. Top-ranked models have been validated with ligand docking simulations and in silico Alanine-scanning mutagenesis studies. The derived extra-cellular loop region of the protein models is directed toward the binding site cavity which is often involved in ligand binding. The binding sites of protein models were refined using induced fit docking to enable the side-chain refinement during ligand docking simulations. The derived models were then tested using molecular modeling techniques on several marketed drugs for schizophrenia. Alanine-scanning mutagenesis and molecular docking studies gave similar results for marketed drugs tested. We believe that these new D2 receptor models will be very useful for a better understanding of the mechanisms of action of drugs to be targeted to the binding sites of D2Rs and they will contribute significantly to drug design studies involving G-protein-coupled receptors in the future.


G-protein-coupled receptors Dopamine D2 receptor Molecular docking simulations Homology modeling Alanine-scanning mutagenesis 



This work was supported by the Max-Planck-Society for Advancement of Science and the “Research Centre Dynamic Systems: Biosystems Engineering (CDS)” funded by the Federal State of Saxony-Anhalt. Part of computations for the work described in this paper was supported by Turkish Scientific and Technical Research Council (TUBITAK) ULAKBIM High Performance Computing Center. S.D. acknowledges support from Bilim Akademisi. The Science Academy, Turkey, under the BAGEP program.

Supplementary material

11030_2015_9569_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (docx 1701 KB)


  1. 1.
    Römpler H, Stäubert C, Thor D, Schulz A, Hofreiter M, Schöneberg T (2007) G protein-coupled time travel: evolutionary aspects of GPCR research. Mol Interv 7:17–25. doi: 10.1124/mi.7.1.5 CrossRefPubMedGoogle Scholar
  2. 2.
    Congreve M, Marshall F (2010) The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 159:986–996. doi: 10.1111/j.1476-5381.2009.00476.x CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996. doi: 10.1038/nrd2199 CrossRefPubMedGoogle Scholar
  4. 4.
    Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357. doi: 10.1038/nrd2592 CrossRefPubMedGoogle Scholar
  5. 5.
    Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the \(\upbeta \)2 adrenergic receptor-Gs protein complex. Nature 477:549–555. doi: 10.1038/nature10361 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217. doi: 10.1126/science.1164772 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551. doi: 10.1038/nature10753 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–187. doi: 10.1038/nature07063 CrossRefPubMedGoogle Scholar
  9. 9.
    Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502. doi: 10.1038/nature07330 CrossRefPubMedGoogle Scholar
  10. 10.
    Jackson DM, Westlind-Danielsson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 64:291–370. doi: 10.1016/0163-7258(94)90041-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225. doi: 10.1186/1471-2296-12-32 PubMedGoogle Scholar
  12. 12.
    Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719. doi: 10.1038/261717a0 CrossRefPubMedGoogle Scholar
  13. 13.
    Creese I, Burt DR, Snyder SH (1996) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. J Neuropsychiatry Clin Neurosci 8:223–226. doi: 10.1126/science.3854 CrossRefPubMedGoogle Scholar
  14. 14.
    Beaulieu J-M, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi: 10.1124/pr.110.002642.182 CrossRefPubMedGoogle Scholar
  15. 15.
    Greengard P (2001) The neurobiology of dopamine signaling. Biosci Rep 21:247–269CrossRefPubMedGoogle Scholar
  16. 16.
    Oerther S, Ahlenius S (2000) Atypical antipsychotics and dopamine D(1) receptor agonism: an in vivo experimental study using core temperature measurements in the rat. J Pharmacol Exp Ther 292:731–736PubMedGoogle Scholar
  17. 17.
    Patel S, Freedman S, Chapman KL, Emms F, Fletcher AE, Knowles M, Marwood R, Mcallister G, Myers J, Curtis N, Kulagowski JJ, Leeson PD, Ridgill M, Graham M, Matheson S, Rathbone D, Watt AP, Bristow LJ, Rupniak NM, Baskin E, Lynch JJ, Ragan CI (1997) Biological profile of L-745,870, a selective antagonist with high affinity for the dopamine D4 receptor. J Pharmacol Exp Ther 283:636–647PubMedGoogle Scholar
  18. 18.
    Rauser L, Savage JE, Meltzer HY, Roth BL (2001) Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J Pharmacol Exp Ther 299:83–89PubMedGoogle Scholar
  19. 19.
    The UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. doi: 10.1006/jmbi.1993.1626 CrossRefPubMedGoogle Scholar
  22. 22.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Genet 55:351–367. doi: 10.1002/prot.10613 CrossRefPubMedGoogle Scholar
  24. 24.
    Stein A, Kortemme T (2013) Improvements to Robotics-Inspired Conformational Sampling in Rosetta. PLoS One. doi: 10.1371/journal.pone.0063090 Google Scholar
  25. 25.
    Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. doi: 10.1093/nar/gkh468 Google Scholar
  26. 26.
    Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486. doi: 10.1007/BF00228148 CrossRefPubMedGoogle Scholar
  27. 27.
    Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. doi: 10.1007/s10822-013-9644-8 CrossRefPubMedGoogle Scholar
  28. 28.
    Jorgensen WL, Tirado-Rives J (1988) The OPLS potential functions for proteins. Energy minimizations for crystals of c‘yclic peptides and crambin. J Am Chem Soc 110:1657–1666. doi: 10.1021/ja00214a001 CrossRefGoogle Scholar
  29. 29.
    Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pK a values. Proteins Struct Funct Genet 61:704–721. doi: 10.1002/prot.20660 CrossRefPubMedGoogle Scholar
  30. 30.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182. doi: 10.1021/ci049714+ CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Chen IJ, Foloppe N (2010) Drug-like bioactive structures and conformational coverage with the ligprep/confgen suite: comparison to programs MOE and catalyst. J Chem Inf Model 50:822–839. doi: 10.1021/ci100026x CrossRefPubMedGoogle Scholar
  32. 32.
    Tubert-Brohman I, Sherman W, Repasky M, Beuming T (2013) Improved docking of polypeptides with glide. J Chem Inf Model 53:1689–1699. doi: 10.1021/ci400128m CrossRefPubMedGoogle Scholar
  33. 33.
    Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487. doi: 10.1021/jp003919d CrossRefGoogle Scholar
  34. 34.
    Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553. doi: 10.1021/jm050540c CrossRefPubMedGoogle Scholar
  35. 35.
    Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions.1. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445Google Scholar
  36. 36.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759. doi: 10.1021/jm030644s CrossRefPubMedGoogle Scholar
  37. 37.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. doi: 10.1021/jm051256o CrossRefPubMedGoogle Scholar
  38. 38.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å Structure of the human beta 2-adrenergic receptor. Structure 16:897–905. doi: 10.1016/j.str.2008.05.001
  39. 39.
    Malo M, Brive L, Luthman K, Svensson P (2012) Investigation of D 2 receptor-agonist interactions using a combination of pharmacophore and receptor homology modeling. ChemMedChem 7:471–482. doi: 10.1002/cmdc.201100545 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    McRobb FM, Capuano B, Crosby IT, Chalmers DK, Yuriev E (2010) Homology modeling and docking evaluation of aminergic g protein-coupled receptors. J Chem Inf Model 50:626–637. doi: 10.1021/ci900444q CrossRefPubMedGoogle Scholar
  41. 41.
    Shi L, Javitch JA (2002) The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu Rev Pharmacol Toxicol 42:437–467. doi: 10.1146/annurev.pharmtox.42.091101.144224 CrossRefPubMedGoogle Scholar
  42. 42.
    Kim H, Park H (2003) Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng 16:553–560. doi: 10.1093/protein/gzg072 CrossRefPubMedGoogle Scholar
  43. 43.
    Homan EJ, Wikstrom HV, Grol CJ (1999) Molecular modeling of the dopamine D2 and serotonin 5-HT1A receptor binding modes of the enantiomers of 5-OMe-BPAT. Bioorg Med Chem 7:1805–20CrossRefPubMedGoogle Scholar
  44. 44.
    Javitch JA, Fu D, Chen J, Karlin A (1995) Mapping the binding-site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron 14:825–831. doi: 10.1016/0896-6273(95)90226-0 CrossRefPubMedGoogle Scholar
  45. 45.
    Wang CD, Gallaher TK, Shih JC (1993) Site-directed mutagenesis of the serotonin 5-hydroxytrypamine2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Mol Pharmacol 43:931–940PubMedGoogle Scholar
  46. 46.
    Shi L, Javitch JA (2004) The second extracellular loop of the dopamine D2 receptor lines the binding-site crevice. Proc Natl Acad Sci USA 101:440–445. doi: 10.1073/pnas.2237265100 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Shi L, Simpson MM, Ballesteros JA, Javitch JA (2001) The first transmembrane segment of the dopamine D2 receptor: accessibility in the binding-site crevice and position in the transmembrane bundle. Biochemistry 40:12339–12348. doi: 10.1021/bi011204a CrossRefPubMedGoogle Scholar
  48. 48.
    Javitch JA, Ballesteros JA, Chen J, Chiappa V, Simpson MM (1999) Electrostatic and aromatic microdomains within the binding-site crevice of the D2 receptor: contributions of the second membrane-spanning segment. Biochemistry 38:7961–7968. doi: 10.1021/bi9905314 CrossRefPubMedGoogle Scholar
  49. 49.
    Fu D, Ballesteros Ja, Weinstein H, Chen J, Javitch JA (1996) Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice. Biochemistry 35:11278–11285. doi: 10.1021/bi960928x CrossRefPubMedGoogle Scholar
  50. 50.
    Javitch JA, Fu D, Chen J (1995) Residues in the fifth membrane-spanning segment of the dopamine D2 receptor exposed in the binding-site crevice. Biochemistry 34:16433–16439. doi: 10.1021/bi00050a026 CrossRefPubMedGoogle Scholar
  51. 51.
    Javitch JA, Ballesteros JA, Weinstein H, Chen J (1998) A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor is accessible in the binding-site crevice. Biochemistry 37:998–1006. doi: 10.1021/bi972241y CrossRefPubMedGoogle Scholar
  52. 52.
    Mansour A, Meng F, Meador-Woodruff JH, Taylor LP, Civelli O, Akil H (1992) Site-directed mutagenesis of the human dopamine D2 receptor. Eur J Pharmacol 227:205–214CrossRefPubMedGoogle Scholar
  53. 53.
    Cox BA, Henningsen RA, Spanoyannis A, Neve RL, Neve KA (1992) Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors. J Neurochem 59:627–635. doi: 10.1111/j.1471-4159.1992.tb09416.x CrossRefPubMedGoogle Scholar
  54. 54.
    Cho W, Taylor LP, Mansour A, Akil H (1995) Hydrophobic residues of the D2 dopamine receptor are important for binding and signal transduction. J Neurochem 65:2105–2115Google Scholar
  55. 55.
    Coley C, Woodward R, Johansson AM, Strange PG, Naylor LH (2000) Effect of multiple serine/alanine mutations in the transmembrane spanning region V of the D2 dopamine receptor on ligand binding. J Neurochem 74:358–366. doi: 10.1046/j.1471-4159.2000.0740358.x CrossRefPubMedGoogle Scholar
  56. 56.
    Durdagi S, Kapou A, Kourouli T, Andreou T, Nikas SP, Nahmias VR, Papahatjis DP, Papadopoulos MG, Mavromoustakos T (2007) The application of 3D-QSAR studies for novel cannabinoid ligands substituted at the C1’ position of the alkyl side chain on the structural requirements for binding to cannabinoid receptors CB1 and CB2. J Med Chem 50:2875–2885Google Scholar
  57. 57.
    Potamitis C, Zervou M, Katsiaras V, Zoumpoulakis P, Durdagi S, Papadopoulos MG, Hayes JM, Grdadolnik SG, Kyrikou I, Argyropoulos D, Vatougia G, Mavromoustakos T (2009) Antihypertensive drug valsartan in solution and at the AT(1) receptor: conformational analysis, dynamic NMR spectroscopy, in silico docking, and molecular dynamics simulations. J Chem Inf Model 49:726–739Google Scholar
  58. 58.
    Mavromoustakos T, Durdagi S, Koukoulitsa C, Simcic M, Papadopoulos MG, Hodoscek M, Grdadolnik SG (2011) Strategies in the rational drug design. Curr Med Chem 18:2517–2530Google Scholar
  59. 59.
    Durdagi S, Papadopoulos MG, Zoumpoulakis PG, Koukoulitsa C, Mavromoustakos T (2010) A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis. Mol Divers 14:257–276Google Scholar
  60. 60.
    Durdagi S, Papadopoulos MG, Papahatjis DP, Mavromoustakos T (2007) Combined 3D QSAR and molecular docking studies to reveal novel cannabinoid ligands with optimum binding activity. Bioorg Med Chem Lett 17:6754–6763Google Scholar
  61. 61.
    Durdagi S, Reis H, Papadopoulos MG, Mavromoustakos T (2008) Comparative molecular dynamics simulations of the potent synthetic classical cannabinoid ligand AMG3 in solution and at binding site of the CB1 and CB2 receptors. Bioorg Med Chem 16:7377–7387Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryIstanbul Technical UniversityIstanbulTurkey
  2. 2.Max-Planck Institute for Dynamics of Complex Technical SystemMolecular Simulations and Design GroupMagdeburgGermany
  3. 3.Department of Biophysics, School of MedicineBahcesehir UniversityIstanbulTurkey

Personalised recommendations