Molecular Diversity

, Volume 19, Issue 1, pp 77–85 | Cite as

A mild, three-component one-pot synthesis of 2,4,5-trisubstituted imidazoles using Mo(IV) salen complex in homogeneous catalytic system and Mo(IV) salen complex nanoparticles onto silica as a highly active, efficient, and reusable heterogeneous nanocatalyst

  • Hashem SharghiEmail author
  • Mahdi Aberi
  • Mohammad Mahdi Doroodmand
Full-Length Paper


Mo(IV) salen complex (2.5 mol%) was found to be a highly efficient catalyst for the one-pot synthesis of 2,4,5-triarylimidazoles via a three-component reaction using benzil or benzoin, aryl aldehydes, and ammonium acetate as a nitrogen source under mild conditions. In order to recover and the reuse of the catalyst, a new Mo(IV) salen–silica nanoparticle as heterogeneous catalyst was prepared by simple and successful immobilization of the catalyst onto silica (3-aminopropyl functionalized silica gel). This procedure can be applied to large-scale conditions with high efficiency. Experimental evidence showed that the catalyst is stable and can be easily recovered and reused for at least five times without significant loss of activity. The nanocatalyst was characterized using FT-IR spectroscopy, scanning electron microscopy, atomic force microscopy, powder X-ray diffraction , transmission electron microscopy, thermogravimetric instrument for analysis of nitrogen adsorption, and inductively coupled plasma spectrometer.

Graphical Abstract


Mo(IV) salen complex Heterogeneous catalyst Nanoparticle 2, 4, 5-Trisubstituted imidazoles MCRs Multicomponent reaction 

Supplementary material

11030_2014_9558_MOESM1_ESM.doc (4.2 mb)
Supplementary material 1 (doc 4302 KB)


  1. 1.
    Samai S, Nandi GC, Singh P, Singh MS (2009) L-Proline: an efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron 65:10155–10161. doi: 10.1016/j.tet.2009.10.019 CrossRefGoogle Scholar
  2. 2.
    Lambardino JG, Wiseman EH (1974) Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles. J Med Chem 17:1182–1188. doi: 10.1021/jm00257a011 CrossRefGoogle Scholar
  3. 3.
    Gadekar LS, Mane SR, Katkar SS, Arbad BR, Lande MK (2009) Scolecite as an efficient heterogeneous catalyst for the synthesis of 2,4,5-triarylimidazoles. Cent Eur J Chem 7:550–554. doi: 10.2478/s11532-009-0050-y CrossRefGoogle Scholar
  4. 4.
    Balalaie S, Arabanian A (2000) One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem 2:274–276. doi: 10.1039/b006201o CrossRefGoogle Scholar
  5. 5.
    Wang L, Cai C (2009) Polymer-supported zinc chloride: a highly active and reusable heterogeneous catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazoles. Monatsh Chem 140:541–546. doi: 10.1007/s00706-008-0086-2 CrossRefGoogle Scholar
  6. 6.
    Sparks RB, Combs AP (2004) Microwave-assisted synthesis of 2,4,5-triaryl-imidazole; a novel thermally induced N-hydroxyimidazole N–O bond cleavage. Org Lett 6:2473–2475. doi: 10.1021/ol049124x PubMedCrossRefGoogle Scholar
  7. 7.
    Sharma D, Hazarika P, Konwar D (2008) An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by \(\text{ InCl }_{3}.\text{3H }_{2}\text{ O }\). Tetrahedron Lett 49:2216–2220. doi:  10.1016/j.tetlet.2008.02.053 CrossRefGoogle Scholar
  8. 8.
    Sharma G, Jyothi Y, Lakshmi P (2006) Efficient room-temperature synthesis of tri- and tetrasubstituted imidazoles catalyzed by \(\text{ ZrCl }_{4}\). Synth Commun 36:2991–3000. doi:  10.1080/00397910600773825 CrossRefGoogle Scholar
  9. 9.
    Karimim AR, Alimohammadi Z, Amini MM (2010) Wells-Dawson heteropolyacid supported on silica: a highly efficient catalyst for synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Mol Divers 14:635–641. doi: 10.1007/s11030-009-9197-x CrossRefGoogle Scholar
  10. 10.
    Heravi MM, Bakhtiari K, Oskooie HA, Taheri S (2007) Synthesis of 2,4,5-triaryl-imidazoles catalyzed by \(\text{ NiCl }_{2}\cdot \text{6H }_{2}\text{ O }\) under heterogeneous system. J Mol Catal A: Chem 263:279–281. doi: 10.1016/j.molcata.2006.08.070
  11. 11.
    Sangshetti JN, Kokare ND, Kotharkar SA, Shinde DB (2008) Sodium bisulfite as an efficient and inexpensive catalyst for the one-pot synthesis of 2,4,5-triaryl-1\(H\)-imidazoles from benzil or benzoin and aromatic aldehydes. Mont Fur Chem 139:125–127. doi:  10.1007/s00706-007-0766-3 CrossRefGoogle Scholar
  12. 12.
    Dake SA, Khedkar MB, Irmale GS, Ukalgaonkar SJ, Thorat VV, Shintre SA, Pawar RP (2012) Sulfated tin oxide: a reusable and highly efficient heterogeneous catalyst for the synthesis of 2,4,5-triaryl-\(1H\)-imidazole derivatives. Synth Commun 42:1509–1520. doi: 10.1080/00397911.2010.541744
  13. 13.
    Parveen A, Ahmed MD, Rafi SK, Shaikh KA, Deshmukh SP, Pawar RP (2007) Efficient synthesis of 2,4,5-triaryl substituted imidazoles under solvent free conditions at room temperature. Arkivoc 16:12–18. doi: 10.3998/ark.5550190.0008.g02 CrossRefGoogle Scholar
  14. 14.
    Kidwai M, Mothsra P, Bansal V, Goyal R (2006) Efficient elemental iodine catalyzed one-pot synthesis of 2,4,5-triarylimidazoles. Mont Fur Chem 137:1189–1194. doi: 10.1007/s00706-006-0518-9 CrossRefGoogle Scholar
  15. 15.
    Sangshetti JN, Kakare ND, Kotharkar SA, Shinde DB (2008) Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1\(H\)-imidazoles. J Chem Sci 120:463–467. doi:  10.1007/s12039-008-0072-6 CrossRefGoogle Scholar
  16. 16.
    Satyanarayana VSV, Sivakumar A (2011) An efficient and novel one-pot synthesis of 2,4,5-triaryl-1H-imidazoles catalyzed by \(\text{ UO }_{2}(\text{ NO }_{3})_{2}.\text{6H }_{2}\text{ O }\) under heterogeneous conditions. Chem Pap 65:519–526. doi: 10.2478/s11696-011-0028-z.ISSN:0366-6352
  17. 17.
    Siddiqui SA, Narkhede UC, Palimkar SS, Daniel T, Lahoti RJ, Srinivasan KV (2005) Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or \(\alpha \)-hydroxyketone. Tetrahedron 61:3539–3546. doi:  10.1016/j.tet.2005.01.116 CrossRefGoogle Scholar
  18. 18.
    Murthy SN, Madhav B, Nageswar YVD (2010) DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazoles via multi-component condensation strategy. Tetrahedron Lett 51:5252–5257. doi: 10.1016/j.tetlet.2010.07.128 CrossRefGoogle Scholar
  19. 19.
    Surpur MP, Kshirsagar S, Samant SD (2009) Exploitation of the catalytic efficacy of Mg/Al hydrotalcite for the rapid synthesis of 2-aminochromene derivatives via a multicomponent strategy in the presence of microwaves. Tetrahedron Lett 50:719–722. doi: 10.1016/j.tetlet.2008.11.114 CrossRefGoogle Scholar
  20. 20.
    Sharghi H, Aberi M, Doroodmanda MM (2008) Reusable cobalt(III)-salen complex supported on activated carbon as an efficient heterogeneous catalyst for synthesis of 2-arylbenzimidazole derivatives. Adv Synth Catal 350:2380–2390. doi: 10.1002/adsc.200800317 CrossRefGoogle Scholar
  21. 21.
    Sharghi H, Aberi M, Doroodmanda MM (2012) One-pot synthesis of 2-arylbenzimidazole, 2-arylbenzothiazole and 2-arylbenzoxazole derivatives using vanadium(IV)-salen complex as homogeneous catalyst and vanadium(IV)-salen complex nanoparticles immobilized onto silica as a heterogeneous nanocatalyst. J Iran Chem Soc 9:189–204. doi: 10.1007/s13738-011-0045-4 CrossRefGoogle Scholar
  22. 22.
    Sharghi H, Khoshnood A, Doroodmand MM, Khalifeh R (2012) 1,4-Dihydroxyanthraquinone-copper(II) nanoparticles immobilized on silica gel: a highly efficient, copper scavenger and recyclable heterogeneous nanocatalyst for a click approach to the three-component synthesis of 1,2,3-triazole derivatives in water. J Iran Chem Soc 9:231–250. doi: 10.1007/s13738-011-0046-3 CrossRefGoogle Scholar
  23. 23.
    Sharghi H, Khalifeh R, Mansouri SG, Aberi M, Eskandari MM (2011) Simple, efficient, and applicable route for synthesis of 2-aryl(heteroaryl)-benzimidazoles at room temperature using copper nanoparticles on activated carbon as a reusable heterogeneous catalyst. Catal Lett 141:1845–1850. doi: 10.1007/s10562-011-0671-6 CrossRefGoogle Scholar
  24. 24.
    Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM (2013) Facile synthesis of 5-substituted-1\(H\)-tetrazoles and 1-substituted-1\(H\)-tetrazoles catalyzed by recyclable 4\(^{\prime }\)-phenyl-2,2\(^{\prime }\):6\(^{\prime }\),2\(^{\prime \prime }\)-terpyridine copper(II) complex immobilized onto activated multi-walled carbon nanotubes. J Organomet Chem 738:41–48. doi:  10.1016/j.jorganchem.2013.04.013 CrossRefGoogle Scholar
  25. 25.
    Sabry DY, Youssef TA, El-Medani SM, Ramadan RM (2003) Reactions of chromium and molybdenum carbonyls with bis-(salicylaldehyde)ethylenediimine schiff-base ligand. J Coord Chem 56:1375–1381. doi: 10.1080/00958970310001636471 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hashem Sharghi
    • 1
    Email author
  • Mahdi Aberi
    • 1
  • Mohammad Mahdi Doroodmand
    • 1
    • 2
  1. 1.Department of ChemistryShiraz UniversityShirazIslamic Republic of Iran
  2. 2.Nanotechnology Research InstituteShiraz UniversityShirazIslamic Republic of Iran

Personalised recommendations