Advertisement

Molecular Diversity

, Volume 18, Issue 3, pp 611–619 | Cite as

Autogrid-based clustering of kinases: selection of representative conformations for docking purposes

  • Giovanni Marzaro
  • Alessandro Ferrarese
  • Adriana Chilin
Full-Length Paper

Abstract

The selection of the most appropriate protein conformation is a crucial aspect in molecular docking experiments. In order to reduce the errors arising from the use of a single protein conformation, several authors suggest the use of several tridimensional structures for the target. However, the selection of the most appropriate protein conformations still remains a challenging goal. The protein 3D-structures selection is mainly performed based on pairwise root-mean-square-deviation (RMSD) values computation, followed by hierarchical clustering. Herein we report an alternative strategy, based on the computation of only two atom affinity map for each protein conformation, followed by multivariate analysis and hierarchical clustering. This methodology was applied on seven different kinases of pharmaceutical interest. The comparison with the classical RMSD-based strategy was based on cross-docking of co-crystallized ligands. In the case of epidermal growth factor receptor kinase, also the docking performance on 220 known ligands were evaluated, followed by 3D-QSAR studies. In all the cases, the herein proposed methodology outperformed the RMSD-based one.

Keywords

Protein conformations Kinases  Molecular docking  Hierarchical clustering  AutoGrid 3D-QSAR 

Notes

Acknowledgments

The present work has been carried out with the financial support of the University of Padova ‘Progetto Giovani Studiosi 2012’ to G.M. A.F. thanks financial supports from the University of Padova for a PhD student grant; G.M. thanks financial support from the University of Padova for a post-doc senior grant.

Supplementary material

11030_2014_9524_MOESM1_ESM.pdf (427 kb)
Supplementary material 1 (pdf 426 KB)

References

  1. 1.
    Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A, DiOrio C, Doty J, Morin MJ, Moyer MP, Neveu M, Pollack VA, Pustilnik LR, Reynolds MM, Sloan D, Theleman A, Miller P (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57:4838–4848PubMedGoogle Scholar
  2. 2.
    Zimmermann Jr, Buchdunger E, Mett H, Meyer T, Lydon NB (1997) Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives. Bioorg Med Chem Lett 7:187–192. doi: 10.1016/S0960-894X(96)00601-4
  3. 3.
    Zwick E, Bange J, Ullrich A (2001) Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 8:161–173. doi: 10.1677/erc.0.0080161 PubMedCrossRefGoogle Scholar
  4. 4.
    Porter AC, Vaillancourt RR (1998) Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 17:1343–1352PubMedCrossRefGoogle Scholar
  5. 5.
    Srinivasan D, Plattner R (2006) Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res 66:5648–5655. doi: 10.1158/0008-5472.CAN-06-0734 PubMedCrossRefGoogle Scholar
  6. 6.
    Fu JY, Bian ML, Jiang Q, Zhang CM (2007) Roles of aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5:1–10. doi: 10.1158/1541-7786.MCR-06-0208 PubMedCrossRefGoogle Scholar
  7. 7.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks N, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Siegler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954. doi: 10.1038/nature00766 PubMedCrossRefGoogle Scholar
  8. 8.
    Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770–1783. doi: 10.1200/JCO.2005.03.7689 PubMedCrossRefGoogle Scholar
  9. 9.
    Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16. doi: 10.1016/j.gene.2005.10.018 PubMedCrossRefGoogle Scholar
  10. 10.
    Yu JH, Ustach C, Kim HRC (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36:49–59PubMedCrossRefGoogle Scholar
  11. 11.
    Bradham C, McClay DR (2006) p38 MAPK in development and cancer. Cell Cycle 5:824–828. doi: 10.4161/cc.5.8.2685 PubMedCrossRefGoogle Scholar
  12. 12.
    Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, Sproat G, Swann R, Gray N, Ryan A, Jurgensmeier JM, Womack C (2010) Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 16:3548–3561. doi: 10.1158/1078-0432.CCR-09-2797
  13. 13.
    Zhang JM, Yang PL, Gray NS (2009) Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9:28–39. doi: 10.1038/nrc2559 PubMedCrossRefGoogle Scholar
  14. 14.
    Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5:203–220. doi: 10.1158/1541-7786.MCR-06-0404 PubMedCrossRefGoogle Scholar
  15. 15.
    Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin N 18:1007–1021. doi: 10.1016/j.hoc.2004.06.002 CrossRefGoogle Scholar
  16. 16.
    Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R (2003) FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist 8:303–306. doi: 10.1634/theoncologist.8-4-303 PubMedCrossRefGoogle Scholar
  17. 17.
    Morabito A, Piccirillo MC, Falasconi F, De Feo G, Del Giudice A, Bryce J, Di Maio M, De Maio E, Normanno N, Perrone F (2009) Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions. Oncologist 14:378–390. doi: 10.1634/theoncologist.2008-0261 PubMedCrossRefGoogle Scholar
  18. 18.
    Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140. doi: 10.1158/1535-7163.MCT-08-0013 PubMedCrossRefGoogle Scholar
  19. 19.
    Anwer Z, Gupta SP (2013) A QSAR study on some series of anticancer tyrosine kinase inhibitors. Med Chem 9:203–212. doi: 10.2174/1573406411309020005 PubMedCrossRefGoogle Scholar
  20. 20.
    Marzaro G, Tonus F, Brun P, Castagliuolo I, Guiotto A, Chilin A (2011) The importance of descriptor-based clusterization in QSAR models development: tyrosine kinases inhibitors as a key study. Mol Inf 30:721–732. doi: 10.1002/minf.201100036 Google Scholar
  21. 21.
    Marzaro G, Chilin A, Guiotto A, Uriarte E, Brun P, Castagliuolo I, Tonus F, Gonzalez-Diaz H (2011) Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem 46:2185–2192. doi: 10.1016/j.ejmech.2011.02.072 PubMedCrossRefGoogle Scholar
  22. 22.
    Zhu LL, Hou TJ, Chen LR, Xu XJ (2001) 3D QSAR analyses of novel tyrosine kinase inhibitors based on pharmacophore alignment. J Chem Inf Comp Sci 41:1032–1040. doi: 10.1021/ci010002i CrossRefGoogle Scholar
  23. 23.
    Zhou SY, Li YY, Hou TJ (2013) Feasibility of using molecular docking-based virtual screening for searching dual target kinase inhibitors. J Chem Inf Model 53:982–996. doi: 10.1021/ci400065e PubMedCrossRefGoogle Scholar
  24. 24.
    Choowongkomon K, Sawatdichaikul O, Songtawee N, Limtrakul J (2010) Receptor-based virtual screening of EGFR kinase inhibitors from the NCI diversity database. Molecules 15:4041–4054. doi: 10.3390/molecules15064041 PubMedCrossRefGoogle Scholar
  25. 25.
    Choi H, Park HJ, Shin JC, Ko HS, Lee JK, Lee S, Park H, Hong S (2012) Structure-based virtual screening approach to the discovery of p38 MAP kinase inhibitors. Bioorg Med Chem Lett 22:2195–2199. doi: 10.1016/j.bmcl.2012.01.104 PubMedCrossRefGoogle Scholar
  26. 26.
    Barril X, Morley SD (2005) Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48:4432–4443. doi: 10.1021/jm048972v PubMedCrossRefGoogle Scholar
  27. 27.
    Merlitz H, Wenzel W (2004) High throughput in-silico screening against flexible protein receptors. Lect Notes Comput Sci 3045:465–472CrossRefGoogle Scholar
  28. 28.
    Conconi MT, Marzaro G, Urbani L, Zanusso I, Di Liddo R, Castagliuolo I, Brun P, Tonus F, Ferrarese A, Guiotto A, Chilin A (2013) Quinazoline-based multi-tyrosine kinase inhibitors: synthesis, modeling, antitumor and antiangiogenic properties. Eur J Med Chem 67:373–383. doi: 10.1016/j.ejmech.2013.06.057
  29. 29.
    Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aid Mol Des 16: 151–166Google Scholar
  30. 30.
    Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13:505–524. doi: 10.1002/jcc.540130412 CrossRefGoogle Scholar
  31. 31.
    Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–40. doi: 10.1002/prot.10028 PubMedCrossRefGoogle Scholar
  32. 32.
    Leis S, Zacharias M (2011) Efficient inclusion of receptor flexibility in grid-based protein-ligand docking. J Comput Chem 32: 3433–3439. doi: 10.1002/jcc.21923
  33. 33.
    Leis S, Zacharias M (2012) ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease. Plos One 7:e48008. doi: 10.1371/journal.pone.0048008 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Marzaro G, Guiotto A, Borgatti M, Finotti A, Gambari R, Breveglieri G, Chilin A (2013) Psoralen derivatives as inhibitors of NF-kappa B/DNA interaction: synthesis, molecular modeling, 3D-QSAR, and biological evaluation. J Med Chem 56:1830–1842. doi: 10.1021/jm3009647 PubMedCrossRefGoogle Scholar
  35. 35.
    http://www.rcsb.org/. Accessed 30 Sept 2013
  36. 36.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi: 10.1002/jcc.20084 PubMedCrossRefGoogle Scholar
  37. 37.
    Chilin A, Conconi MT, Marzaro G, Guiotto A, Urbani L, Tonus F, Parnigotto P (2010) Exploring epidermal growth factor receptor (EGFR) inhibitor features: the role of fused dioxygenated rings on the quinazoline scaffold. J Med Chem 53:1862–1866. doi: 10.1021/jm901338g PubMedCrossRefGoogle Scholar
  38. 38.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi: 10.1002/jcc.21256 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Rakotomalala R (2005) TANAGRA: un logiciel gratuit pour l’enseignement et la recherche. Actes de EGC’2005 RNTI-E-3 2:697–702Google Scholar
  40. 40.
    Marvin v, Program B; ChemAxon: Budapest, Hungary; www.chemaxon.com/products. Accessed 10 Jan 2013
  41. 41.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33. doi: 10.1186/1758-2946-3-33 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511. doi: 10.1021/jm020406h PubMedCrossRefGoogle Scholar
  43. 43.
  44. 44.
    Tosco P, Balle T (2011) Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J Mol Model 17:201–208. doi: 10.1007/s00894-010-0684-x PubMedCrossRefGoogle Scholar
  45. 45.
    Pastor M, Cruciani G, Clementi S (1997) Smart region definition: a new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships. J Med Chem 40:1455–1464. doi: 10.1021/jm9608016 PubMedCrossRefGoogle Scholar
  46. 46.
    Baroni M, Clementi S, Cruciani G, Costantino G, Riganelli D, Oberrauch E (1992) Predictive ability of regression-models. 2. Selection of the best predictive pls model. J Chemometr 6: 347–356. doi: 10.1002/cem.1180060605

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Giovanni Marzaro
    • 1
  • Alessandro Ferrarese
    • 1
  • Adriana Chilin
    • 1
  1. 1.Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaPadovaItaly

Personalised recommendations