Molecular Diversity

, Volume 18, Issue 1, pp 219–243 | Cite as

Selective MAO-B inhibitors: a lesson from natural products

  • Simone Carradori
  • Melissa D’Ascenzio
  • Paola Chimenti
  • Daniela Secci
  • Adriana Bolasco
Short Review

Abstract

Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer’s and Parkinson’s. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.

Keywords

Alzheimer’s disease Depression MAO inhibitor  Natural products Neuroprotection  Parkinson’s disease 

Abbreviations

5-HT

Serotonin

5-HTP

5-Hydroxytryptophan

6-OHDA

6-Hydroxydopamine

AChE

Acetylcholinesterase

A

Adrenaline

AD

Alzheimer’s disease

AEA

Anandamide

AR

Asparagus racemosus

BER

Berberine

BBB

Blood–brain barrier

BuChE

Butyrylcholinesterase

bMAO

Bovine monoamine oxidase

\(n\)-BuOH

1-Butanol

CAR

Chloroform extract

CB1

Cannabinoid receptor type 1

clogP

Calculated partition coefficient

CNS

Central nervous system

DA

Dopamine

DOPA

Levodopa

DOPAC

3,4-Dihydroxyphenyl acetic acid

EGCG

Epigallocatechine gallate

FST

Forced swimming test

\(\hbox {hA}_{\mathrm{2A}}\)

Human adenosine 2A

HAR

Hexane extract

HPE

Hypericum perforatum methanol extract

HPLC

High-performance liquid chromatography

HR-MS

High-resolution mass spectrometry

\(\hbox {IC}_{50}\)

Half maximal inhibitory concentration

IL-4

Interleukin-4

IFN-\(\upgamma \)

Interferon \(\upgamma \)

\(K_{\mathrm{d}}\)

Dissociation constant

kDa

KiloDalton

\(K_{\mathrm{i}}\)

Inhibition constant

\(K_{\mathrm{m}}\)

Michaelis constant

\(I_{\mathrm{max}}\)

Maximal rate of inactivation

\(\hbox {LD}_{50}\)

Half lethal dose

LED

Light-emitting diode

MAO

Monoamine oxidase

mg/kg

Milligram/kilogram

MAR

Methanol extract

\(\upmu \)M

Micromolar

MEKC

Micellar electrokinetic chromatography

MMP

Mitochondrial membrane potential

\(\hbox {MPP}^{+}\)

1-Methyl-4-phenylpyridinium

MPT

Mitochondrial permeability transition

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NA

Noradrenaline

ND

Not determined

nM

Nanomolar

NMDA

N-Methyl-d-aspartate

NMR

Nuclear magnetic resonance

PBS

Phosphate buffer system

PC12

Prostatic cancer cells

PD

Parkinson’s disease

PEA

Phenylethylamine

p\(\hbox {IC}_{50}\)

\(-\)log \(\hbox {IC}_{50}\)

pMAO

Pig brain monoamine oxidase

PRF

Proanthocyanidin-rich fraction

PwTX-I

6-Hydroxytripargine

PwTX-II

1-(4-Guanidinobutoxy)-6-hydroxy-1,2,3,4-tetrahydro-\(\upbeta \)-carboline

rMAO

Rat monoamine oxidase

SFE

Supercritical fluid extraction

ThC

Tetrahydrocurcumin

THC

Tetrahydrocannabinol

TST

Immobility time in tail suspension test

\(V_{\mathrm{max}}\)

Maximum reaction rate

References

  1. 1.
    Blaschko H, Richter D, Schlossmann H (1937) The inactivation of adrenaline. J Physiol 90:1–17 Google Scholar
  2. 2.
    Zeller EA (1938) Über den enzymatischen abbau von histamin und diaminen. 2 Mitteilung. Helv Chim Acta 21:880–890CrossRefGoogle Scholar
  3. 3.
    Murphy DL (1978) Substrate-selective monoamine oxidases: inhibitor, tissue, species and functional differences. Biochem Pharmacol 27:1889–1893PubMedCrossRefGoogle Scholar
  4. 4.
    Johnston JP (1968) Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17:1285–1297PubMedCrossRefGoogle Scholar
  5. 5.
    Bach AW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg PH, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85:4934–4938PubMedCrossRefGoogle Scholar
  6. 6.
    De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A (2005) Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci USA 102:12684–12689. doi:10.1073/pnas.0505975102 PubMedCrossRefGoogle Scholar
  7. 7.
    Binda C, Hubálek F, Li M, Edmondson DE, Mattevi A (2004) Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Lett 564:225–228. doi:10.1016/S0014-5793(04)00209-1 PubMedCrossRefGoogle Scholar
  8. 8.
    Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience 25:439–456. doi:10.1016/0306-4522(88)90250-3 PubMedCrossRefGoogle Scholar
  9. 9.
    Bortolato M, Chen K, Shih JC (2008) Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev 60:1527–1533. doi:10.1016/j.addr.2008.06.002 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Davie CA (2008) A review of Parkinson’s disease. Br Med Bull 86:109–127. doi:10.1093/bmb/ldn013 PubMedCrossRefGoogle Scholar
  11. 11.
    Youdim MBH, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309. doi:10.1038/nrn1883 PubMedCrossRefGoogle Scholar
  12. 12.
    Youdim MBH, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand 80:47–54CrossRefGoogle Scholar
  13. 13.
    Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52:515–520. doi:10.1111/j.1471-4159.1989.tb09150.x PubMedCrossRefGoogle Scholar
  14. 14.
    Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49:1–20PubMedCrossRefGoogle Scholar
  15. 15.
    Benedetti MS, Dostert P (1989) Monoamine oxidase, brain ageing and degenerative diseases. Biochem Pharmacol 38:555–561. doi:10.1016/0006-2952(89)90198-6 CrossRefGoogle Scholar
  16. 16.
    Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE (2002) Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci Lett 326:56–60. doi:10.1016/S0304-3940(02)00307-5 PubMedCrossRefGoogle Scholar
  17. 17.
    Abell CW, Kwan SW (2001) Molecular characterization of monoamine oxidases A and B. Prog Nucl Acid Res Mol Biol 65:129–156. doi:10.1016/S0079-6603(00)65004-3 CrossRefGoogle Scholar
  18. 18.
    Elmer LW, Bertoni JM (2008) The increasing role of monoamine oxidase type B inhibitors in Parkinson’s disease therapy. Expert Opin Pharmacother 9:2759–2772. doi:10.1517/14656566.9.16.2759 PubMedCrossRefGoogle Scholar
  19. 19.
    Bolasco A, Fioravanti R, Carradori S (2005) Recent development of monoamine oxidase inhibitors. Expert Opin Ther Pat 15:1763–1782. doi:10.1517/13543776.15.12.1763 CrossRefGoogle Scholar
  20. 20.
    Secci D, Carradori S, Bolasco A, Bizzarri B, D’Ascenzio M, Maccioni E (2012) Discovery and optimization of pyrazoline derivatives as promising monoamine oxidase inhibitors. Curr Top Med Chem 12:2240–2257. doi:10.2174/1568026611212200009 PubMedCrossRefGoogle Scholar
  21. 21.
    Secci D, Bolasco A, Chimenti P, Carradori S (2011) The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr Med Chem 18:5114–5144. doi:10.2174/092986711797636090 PubMedCrossRefGoogle Scholar
  22. 22.
    Bolasco A, Carradori S, Fioravanti R (2010) Focusing on new monoamine oxidase inhibitors. Expert Opin Ther Pat 20:909–939. doi:10.1517/13543776.2010.495716 PubMedCrossRefGoogle Scholar
  23. 23.
    Carradori S, Secci D, Bolasco A, Chimenti P, D’Ascenzio M (2012) Patent-related survey on new monoamine oxidase inhibitors and their therapeutic potential. Expert Opin Ther Pat 22:759–801. doi:10.1517/13543776.2012.698613 PubMedCrossRefGoogle Scholar
  24. 24.
    Herraiz T, Chaparro C (2005) Human monoamine oxidase is inhibited by tobacco smoke: \(\beta \)-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 326:378–386. doi: 10.1016/j.bbrc.2004.11.033 PubMedCrossRefGoogle Scholar
  25. 25.
    Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T (2008) Structure of human monoamine oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci USA 105:5739–5744. doi:10.1073/pnas.0710626105 PubMedCrossRefGoogle Scholar
  26. 26.
    Reniers J, Robert S, Frederick R, Masereel B, Vincent S, Wouters J (2011) Synthesis and evaluation of \(\beta \)-carboline derivatives as potential monoamine oxidase inhibitors. Bioorg Med Chem 19:134–144. doi: 10.1016/j.bmc.2010.11.041 PubMedCrossRefGoogle Scholar
  27. 27.
    Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT, Swanson PD (2002) Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 155:732–738. doi:10.1093/aje/155.8.732 PubMedCrossRefGoogle Scholar
  28. 28.
    Chen JF, Steyn S, Staal R, Petzer JP, Xu K, Van Der Schyf CJ, Castagnoli K, Sonsalla PK, Castagnoli N Jr, Schwarzschild MA (2002) 8-(3-Chlorostyryl)caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 277:36040–36044. doi:10.1074/jbc.M206830200 PubMedCrossRefGoogle Scholar
  29. 29.
    Chen JF, Xu K, Petzer JP, Staal R, Xu YH, Beilstein M, Sonsalla PK, Castagnoli K (2001) Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 21:RC143PubMedGoogle Scholar
  30. 30.
    Petzer JP, Castagnoli N Jr, Schwarzschild MA, Chen JF, Van der Schyf CJ (2009) Dual-target-directed drugs that block monoamine oxidase B and adenosine A(2A) receptors for Parkinson’s disease. Neurotherapeutics 6:141–151. doi:10.1016/j.nurt.2008.10.035 PubMedCrossRefGoogle Scholar
  31. 31.
    Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599. doi:10.1021/jm0704090 PubMedCrossRefGoogle Scholar
  32. 32.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v Google Scholar
  33. 33.
    Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153. doi:10.1021/np040106y Google Scholar
  34. 34.
    Breinbauer R, Manger M, Scheck M, Waldmann H (2002) Natural product guided compound library development. Curr Med Chem 9:2129–2145. doi:10.2174/0929867023368773 PubMedCrossRefGoogle Scholar
  35. 35.
    Vina D, Serra S, Lamela M, Delogu G (2012) Herbal natural products as a source of monoamine oxidase inhibitors: a review. Curr Top Med Chem 12:2131–2144. doi:10.2174/1568026611212200003 PubMedCrossRefGoogle Scholar
  36. 36.
    Rajput MS (2010) Natural monoamine oxidase inhibitors: a review. J Pharmacy Res 3:482–485Google Scholar
  37. 37.
    Lin RD, Hou WC, Yen KY, Lee MH (2003) Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine 10:650–656. doi:10.1078/0944-7113-00324 PubMedCrossRefGoogle Scholar
  38. 38.
    Clarke SED, Ramsay RR (2011) Dietary inhibitors of monoamine oxidase A. J Neural Transm 118:1031–1041. doi:10.1007/s00702-010-0537-x CrossRefGoogle Scholar
  39. 39.
    Yoshino S, Hara A, Sakakibara H, Kawabata K, Tokumura A, Ishisaka A, Kawai Y, Terao J (2011) Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 27:847–852. doi:10.1016/j.nut.2010.09.002 PubMedCrossRefGoogle Scholar
  40. 40.
    Pan Y, Kong L, Xia X, Zhang W, Xia Z, Jiang F (2005) Antidepressant-like effect of icariin and its possible mechanism in mice. Pharmacol Biochem Behav 82:686–694. doi:10.1016/j.pbb.2005.11.010 PubMedCrossRefGoogle Scholar
  41. 41.
    Lee MH, Lin RD, Shen LY, Yang LL, Yen KY, Hou WC (2001) Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J Agric Food Chem 49:5551–5555. doi:10.1021/jf010622j
  42. 42.
    Chimenti F, Cottiglia F, Bonsignore L, Casu L, Casu M, Floris C, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Trombetta G, Loizzo A, Guarino I (2006) Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: extraction, biological analysis, and computational study. J Nat Prod 69:945–949. doi:10.1021/np060015w Google Scholar
  43. 43.
    Saaby L, Rasmussen HB, Jäger AK (2009) MAO-A inhibitory activity of quercetin from Calluna vulgaris (L.) Hull. J Ethnopharmacol 121:178–181. doi:10.1016/j.jep.2008.10.012 PubMedCrossRefGoogle Scholar
  44. 44.
    Han XH, Hong SS, Hwang JS, Lee MK, Hwang BY, Ro JS (2007) Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 30:13–17PubMedCrossRefGoogle Scholar
  45. 45.
    Hou WC, Lin RD, Chen CT, Lee MH (2005) Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla. J Ethnopharmacol 100:216–220. doi:10.1016/j.jep.2005.03.017 PubMedCrossRefGoogle Scholar
  46. 46.
    Hwang JS, Lee SA, Hong SS, Lee KS, Lee MK, Hwang BY, Ro JS (2005) Monoamine oxidase inhibitory components from the roots of Sophora flavescens. Arch Pharm Res 28:190–194PubMedCrossRefGoogle Scholar
  47. 47.
    Haraguchi H, Tanaka Y, Kabbash A, Fujioka T, Ishizu T, Yagi A (2004) Monoamine oxidase inhibitors from Gentiana lutea. Phytochemistry 65:2255–2260. doi:10.1016/j.phytochem.2004.06.025 PubMedCrossRefGoogle Scholar
  48. 48.
    Bandaruk Y, Mukai R, Kawamura T, Nemoto H, Terao J (2012) Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J Agric Food Chem 60:10270–10277. doi:10.1021/jf303055b PubMedCrossRefGoogle Scholar
  49. 49.
    Han XH, Hong SS, Hwang JS, Jeong SH, Hwang JH, Lee MH, Lee MK, Lee D, Ro JS, Hwang BY (2005) Monoamine oxidase inhibitory constituents from the fruits of Cudrania tricuspidata. Arch Pharmacal Res 28:1324–1327CrossRefGoogle Scholar
  50. 50.
    Han XH, Hwang JH, Hong SS, Choe S, Lee C, Lee MS, Lee D, Lee MK, Lee MK, Hwang BY (2010) Monoamine oxidase inhibitory flavonoids from the root bark of Cudrania tricuspidata. Nat Prod Sci 16:75–79. doi:10.1021/np070059k Google Scholar
  51. 51.
    Stafford GI, Pedersen PD, Jäger AK, Van Staden J (2007) Monoamine oxidase inhibition by southern African traditional medicinal plants. S Afr J Bot 73:384–390. doi:10.1016/j.sajb.2007.03.001 CrossRefGoogle Scholar
  52. 52.
    Holt A, Sharman DF, Baker GB, Palcic MM (1997) A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. Anal Biochem 244:384–392. doi:10.1006/abio.1996.9911 PubMedCrossRefGoogle Scholar
  53. 53.
    Olsen HT, Stafford GI, Van Staden J, Christensen SB, Jäger AK (2008) Isolation of the MAO-inhibitor naringenin from Mentha aquatica L. J Ethnopharmacol 117:500–502. doi:10.1016/j.jep.2008.02.015 PubMedCrossRefGoogle Scholar
  54. 54.
    Zhu W, Ma S, Qu R, Kang D, Liu Y (2006) Antidepressant effect of baicalin extracted from the root of Scutellaria baicalensis in mice and rats. J Pharm Biol 44:503–510. doi:10.1080/13880200600878684 CrossRefGoogle Scholar
  55. 55.
    Singh R, Navneet C, Singh VK (2012) In-silico study of herbal compounds (bacailin, curcumin and dronabinol) as novel MAO inhibitors for Parkinson’s disease treatment. Int J Life Sci Pharma Res 2:L81–L98Google Scholar
  56. 56.
    Gao L, Fang JS, Bai XY, Zhou D, Wang YT, Liu AL, Du GH (2013) In silico target fishing for the potential targets and molecular mechanisms of baicalein as an anti-parkinsonian agent: discovery of the protective effects on NMDA receptor-mediated neurotoxicity. Chem Biol Drug Des 81:675–687. doi:10.1111/cbdd.12127 PubMedCrossRefGoogle Scholar
  57. 57.
    Urbain A, Marston A, Grilo LS, Bravo J, Purev O, Purevsuren B, Batsuren D, Reist M, Carrupt PA, Hostettmann K (2008) Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 71:895–897. doi:10.1021/np070690l PubMedCrossRefGoogle Scholar
  58. 58.
    Dimitrov M, Nikolova I, Benbasat N, Kitanov G, Danchev N (2011) Acute toxicity, antidepressive and MAO inhibitory activity of mangiferin isolated from Hypericum Aucheri. Biotechnol Biotechnol Equip 25:2668–2671. doi:10.5504/bbeq2011.0099 CrossRefGoogle Scholar
  59. 59.
    Fowler CJ, Tipton KF, MacKay AV, Youdim MB (1982) Human platelet monoamine oxidase—a useful enzyme in the study of psychiatric disorders. Neuroscience 7:1577–1594. doi:10.1016/0306-4522(82)90016-1 PubMedCrossRefGoogle Scholar
  60. 60.
    Bhattacharya SK, Sanyal AK, Ghosal S (1972) Monoamine oxidase-inhibiting activity of mangiferin isolated from Canscora decussata. Naturwissenschaften 59:651PubMedCrossRefGoogle Scholar
  61. 61.
    Dreiseitel A, Korte G, Schreier P, Oehme A, Locher S, Domani M, Hajak G, Sand PG (2009) Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B. Pharmacol Res 59:306–311. doi:10.1016/j.phrs.2009.01.014 PubMedCrossRefGoogle Scholar
  62. 62.
    Xu Y, Li S, Chen R, Li G, Barish PA, You W, Chen L, Lin M, Ku B, Pan J, Ogle WO (2010) Antidepressant-like effect of low molecular proanthocyanidin in mice: involvement of monoaminergic system. Pharmacol Biochem Behav 94:447–453. doi:10.1016/j.pbb.2009.10.007 PubMedCrossRefGoogle Scholar
  63. 63.
    Moreira ELG, Rial D, Aguiar AS Jr, Figueiredo CP, Siqueira JM, Dalbo S, Horst H, Oliveira J, Mancini G, dos Santos TS, Villarinho JG, Pinheiro FV, Marino-Neto J, Ferreira J, Bem AF, Latini A, Pizzolatti MG, Ribeiro-do-Valle RM, Prediger RDS (2010) Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson’s disease. J Neural Transm 117:1337–1351. doi:10.1007/s00702-010-0464-x PubMedCrossRefGoogle Scholar
  64. 64.
    Matsumoto T, Suzuki O, Furuta T, Asai M, Kurokawa Y, Nimura Y, Katsumata Y, Takahashi I (1985) A sensitive fluorometric assay for serum monoamine oxidase with kynuramine as substrate. Clin Biochem 18:126–129. doi:10.1016/S0009-9120(85)80094-1 PubMedCrossRefGoogle Scholar
  65. 65.
    Lin SM, Wang SW, Ho SC, Tang YL (2010) Protective effect of green tea (\(-\))-epigallocatechin-3-gallate against the monoamine oxidase B enzyme activity increase in adult rat brains. Nutrition 26:1195–1200. doi: 10.1016/j.nut.2009.11.022 PubMedCrossRefGoogle Scholar
  66. 66.
    Reznichenko L, Kalfon L, Amit T, Youdim MBH, Mandel SA (2010) Low dosage of rasagiline and epigallocatechin gallate synergistically restored the nigrostriatal axis in MPTP-induced Parkinsonism. Neurodegener Dis 7:219–231. doi:10.1159/000265946 PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang XL, Jiang B, Li ZB, Hao S, An LJ (2007) Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by d-galactose. Pharmacol Biochem Behav 88:64–72. doi:10.1016/j.pbb.2007.07.004 PubMedCrossRefGoogle Scholar
  68. 68.
    Bi J, Wang XB, Chen L, Hao S, An LJ, Jiang B, Guo L (2008) Catalpol protects mesencephalic neurons against MPTP induced neurotoxicity via attenuation of mitochondrial dysfunction and MAO-B activity. Toxicol Vitro 22:1883–1889. doi:10.1016/j.tiv.2008.09.007 CrossRefGoogle Scholar
  69. 69.
    Kim JH, Kim GH, Hwang KH (2012) Monoamine oxidase and dopamine \(\beta \)-hydroxylase inhibitors from the fruits of Gardenia jasminoides. Biomol Ther 20:214–219. doi: 10.4062/biomolther.2012.20.2.214 CrossRefGoogle Scholar
  70. 70.
    Han YN, Choo Y, Lee YC, Moon YI, Kim SD, Choi JW (2001) Monoamine oxidase B inhibitors from the fruits of Opuntia ficus-indica var. saboten. Arch Pharm Res 24:51–54PubMedCrossRefGoogle Scholar
  71. 71.
    Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ (2005) The effects of curcumin on depressive-like behaviors in mice. Eur J Pharmacol 518:40–46. doi:10.1016/j.ejphar.2005.06.002 PubMedCrossRefGoogle Scholar
  72. 72.
    Kulkarni SK, Bhutani MK, Bishnoi M (2008) Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology (Berlin) 201:435–442. doi:10.1007/s00213-008-1300-y CrossRefGoogle Scholar
  73. 73.
    Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356. doi:10.1055/s-2006-957450 PubMedCrossRefGoogle Scholar
  74. 74.
    Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99. doi:10.1007/s10787-007-1614-0 PubMedCrossRefGoogle Scholar
  75. 75.
    Morinan A, Garratt HM (1985) An improved fluorimetric assay for brain monoamine oxidase. J Pharmacol Methods 13:213–223PubMedCrossRefGoogle Scholar
  76. 76.
    Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125. doi:10.1080/10715760500233113 PubMedCrossRefGoogle Scholar
  77. 77.
    Ucar G, Tas C, Tümer A (2005) Monoamine oxidase inhibitory activities of the scorpion Mesobuthus gibbosus (Buthidae) venom peptides. Toxicon 45:43–52. doi:10.1016/j.toxicon.2004.09.009 PubMedCrossRefGoogle Scholar
  78. 78.
    Saidemberg DM, Ferreira MAB, Takahashi TN, Gomes PC, Cesar-Tognoli LMM, Da Silva-Filho LC, Tormena CF, Da Silva GVJ, Palma MS (2009) Monoamine oxidase inhibitory activities of indolylalkaloid toxins from the venom of the colonial spider Parawixia bistriata: functional characterization of PwTX-I. Toxicon 54:717–724. doi:10.1016/j.toxicon.2009.05.027 PubMedCrossRefGoogle Scholar
  79. 79.
    Buckholtz NS (1980) Brain serotonin and 5-hydroxyindoleacetic acid concentrations and serotonin synthesis following tetrahydro-\(\beta \)-carboline administration in mice. Naunyn Schmiedebergs Arch Pharmacol 314:215–221PubMedCrossRefGoogle Scholar
  80. 80.
    Cesar LMM, Tormena CF, Marques MR, da Silva GVJ, Mendes MA, Rittner R, Palma MS (2005) Structure determination of hydroxytrypargine: a new tetrahydro-\(\beta \)-carboline toxin from the venom of the spider Parawixia bistriata. Helv Chim Acta 88:796–801. doi: 10.1002/hlca.200590056 CrossRefGoogle Scholar
  81. 81.
    Rommelspacher H, Meier-Henco M, Smolka M, Kloft C (2002) The levels of norharman are high enough after smoking to affect monoamine oxidase B in platelets. Eur J Pharmacol 441:115–125. doi:10.1016/S0014-2999(02)01452-8 PubMedCrossRefGoogle Scholar
  82. 82.
    Cesar LMM, Mendes MA, Tormena CF, Marques MR, De Souza BM, Saidemberg DM, Bittencourt JC, Palma MS (2005) Isolation and chemical characterization of PwTx-II: a novel alkaloid toxin from the venom of the spider Parawixia bistriata (Araneidae, Araneae). Toxicon 46:786–796. doi:10.1016/j.toxicon.2005.08.005 PubMedCrossRefGoogle Scholar
  83. 83.
    Han XH, Hong SS, Lee D, Lee JJ, Lee MS, Moon DC, Han K, Oh KW, Lee MK, Ro JS, Hwang BY (2007) Quinolone alkaloids from Evodiae fructus and their inhibitory effects on monoamine oxidase. Arch Pharm Res 30:397–401PubMedCrossRefGoogle Scholar
  84. 84.
    Lee MK, Hwang BY, Lee SA, Oh GJ, Choi WH, Hong SS, Lee KS, Ro JS (2003) 1-Methyl-2-undecyl-4(1H)-quinolone as an irreversible and selective inhibitor of type B monoamine oxidase. Chem Pharm Bull 51:409–411. doi:10.1248/cpb.51.409 PubMedCrossRefGoogle Scholar
  85. 85.
    Krajl M (1965) A rapid microfluorimetric determination of monoamine oxidase. Biochem Pharmacol 14:1684–1685. doi:10.1016/0006-2952(65)90025-0 PubMedCrossRefGoogle Scholar
  86. 86.
    Lee SA, Hong SS, Han XH, Hwang JS, Oh GJ, Lee KS, Lee MK, Hwang BY, Ro JS (2005) Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity. Chem Pharm Bull 53:832–835. doi:10.1007/s12272-001-1212-7 PubMedCrossRefGoogle Scholar
  87. 87.
    Kong LD, Cheng CHK, Tan RX (2004) Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J Ethnopharmacol 91:351–355. doi:10.1016/j.jep.2004.01.013 PubMedCrossRefGoogle Scholar
  88. 88.
    Lee SA, Hwang JS, Han XH, Lee C, Lee MH, Choe SG, Hong SS, Lee D, Lee MK, Hwang BY (2008) Methylpiperate derivatives from Piper longum and their inhibition of monoamine oxidase. Arch Pharm Res 31:679–683. doi:10.1007/s12272-001-1212-7 PubMedCrossRefGoogle Scholar
  89. 89.
    Ji HF, Shen L (2011) Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Molecules 16:6732–6740. doi:10.3390/molecules16086732 PubMedCrossRefGoogle Scholar
  90. 90.
    Peng WH, Lo KL, Lee YH, Hung TH, Lin YC (2007) Berberine produces antidepressant-like effects in the forced swim test and in the tail suspension test in mice. Life Sci 81:933–938. doi:10.1016/j.lfs.2007.08.003 PubMedCrossRefGoogle Scholar
  91. 91.
    Kulkarni SK, Dhir A (2008) On the mechanism of antidepressant-like action of berberine chloride. Eur J Pharmacol 589:163–172. doi:10.1016/j.ejphar.2008.05.043 PubMedCrossRefGoogle Scholar
  92. 92.
    Castillo J, Hung J, Rodriguez M, Bastidas E, Laboren I, Jaimes A (2005) LED fluorescence spectroscopy for direct determination of monoamine oxidase B inactivation. Anal Biochem 343:293–298. doi:10.1016/j.ab.2005.05.027 PubMedCrossRefGoogle Scholar
  93. 93.
    Lee SS, Kai M, Lee MK (1999) Effects of natural isoquinoline alkaloids on monoamine oxidase activity in mouse brain: inhibition by berberine and palmatine. Med Sci Res 27:749–751Google Scholar
  94. 94.
    Kong LD, Cheng CH, Tan RX (2001) Monoamine oxidase inhibitors from rhizoma of Coptis chinensis. Planta Med 67:74–76. doi:10.1055/s-2001-10874 PubMedCrossRefGoogle Scholar
  95. 95.
    Lambert DM, Fowler CJ (2005) The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications. J Med Chem 48:5059–5087. doi:10.1021/jm058183t Google Scholar
  96. 96.
    Fišar Z (2012) Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuropsychopharmacol Biol Psychiatry 38:68–77. doi:10.1016/j.pnpbp.2011.12.010 PubMedCrossRefGoogle Scholar
  97. 97.
    Hill MN, Hillard CJ, Bambico FR, Patel S, Gorzalka BB, Gobbi G (2009) The therapeutic potential of the endocannabinoid system for the development of a novel class of antidepressants. Trends Pharmacol Sci 30:484–493. doi:10.1016/j.tips.2009.06.006 PubMedCrossRefGoogle Scholar
  98. 98.
    Laviolette SR, Grace AA (2006) The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: implications for schizophrenia and addiction. Cell Mol Life Sci 63:1597–1613. doi:10.1007/s00018-006-6027-5 PubMedCrossRefGoogle Scholar
  99. 99.
    Hill MN, Ho WSV, Hillard CJ, Gorzalka BB (2008) Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents. J Neural Transm 115:1673–1679. doi:10.1007/s00702-008-0131-7 PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Faraj BA, Davis DC, Camp VM, Mooney AJ 3rd, Holloway T, Barika G (1994) Platelet monoamine oxidase activity in alcoholics, alcoholics with drug dependence, and cocaine addicts. Alcohol Clin Exp Res 18:1114–1120. doi:10.1111/j.1530-0277.1994.tb00090.x PubMedCrossRefGoogle Scholar
  101. 101.
    Fišar Z (2010) Inhibition of monoamine oxidase activity by cannabinoids. Naunyn Schmiedebergs Arch Pharmacol 381:563–572. doi:10.1007/s00210-010-0517-6 PubMedCrossRefGoogle Scholar
  102. 102.
    Egashira T, Takayama F, Yamanaka Y (1999) The inhibition of monoamine oxidase activity by various antidepressants: differences found in various mammalian species. Jpn J Pharmacol 81:115–121. doi:10.1254/jjp.81.115 PubMedCrossRefGoogle Scholar
  103. 103.
    Singh GK, Garabadu D, Muruganandam AV, Joshi VK, Krishnamurthy S (2009) Antidepressant activity of Asparagus racemosus in rodent models. Pharmacol Biochem Behav 91:283–290. doi:10.1016/j.pbb.2008.07.010 PubMedCrossRefGoogle Scholar
  104. 104.
    Meena J, Ojha R, Muruganandam AV, Krishnamurthy S (2011) Asparagus racemosus competitively inhibits in vitro the acetylcholine and monoamine metabolizing enzymes. Neurosci Lett 503:6–9. doi:10.1016/j.neulet.2011.07.051 PubMedCrossRefGoogle Scholar
  105. 105.
    Naoi M, Nagatsu T (1986) Inhibition of monoamine oxidase by 3,4-dihydroxyphenylserine. J Neurochem 47:604–607. doi:10.1111/j.1471-4159.1986.tb04542.x PubMedCrossRefGoogle Scholar
  106. 106.
    Mohanasundari M, Sabesan M (2007) Modulating effect of Hypericum perforatum extract on astrocytes in MPTP induced Parkinson’s disease in mice. Eur Rev Med Pharmacol Sci 11:17–20PubMedGoogle Scholar
  107. 107.
    Van Diermen D, Marston A, Bravo J, Reist M, Carrupt PA, Hostettmann K (2009) Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 122:397–401. doi:10.1016/j.jep.2009.01.007 PubMedCrossRefGoogle Scholar
  108. 108.
    Mazzio EA, Harris N, Soliman KF (1998) Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med 64:603–606. doi:10.1055/s-2006-957530 PubMedCrossRefGoogle Scholar
  109. 109.
    Chen XG, Jia YG, Wang BX (1992) Inhibitory effects of the extract of pilose antler on monoamine oxidase in aged mice. China J Chin Materia Med 2:107–110Google Scholar
  110. 110.
    Yang XW (1995) HPLC analysis and inhibitory effect of base components in pilose antler of sika deer and red deer on monoamine oxidase activity. Chin Tradit Herbal Drugs 26:17–19Google Scholar
  111. 111.
    Zhou R, Wang J, Li S, Liu Y (2009) Supercritical fluid extraction of monoamine oxidase inhibitor from antler velvet. Sep Purif Technol 65:275–281. doi:10.1016/j.seppur.2008.10.036 CrossRefGoogle Scholar
  112. 112.
    Wang BX, Chen XG (1989) Inhibitory effect of hypoxanthine on monoamine oxidase activity. Acta Pharm Sinica 24:573–577Google Scholar
  113. 113.
    Hwang KH, Choi K, Park KW (2012) Composition comprising the extract of Loranthus yadoriki sieb having monoamine oxidase-inhibiting activity. WO 2012/081831Google Scholar
  114. 114.
    Hwang KH, Song I (2003) The inhibitory activity on monoamine oxidase of the fruit of Morus alba. Kor J Pharmacogn 34:185–189Google Scholar
  115. 115.
    McEwen CM Jr, Cohen JD (1963) An amine oxidase in normal human serum. J Lab Clin Med 62:766–776PubMedGoogle Scholar
  116. 116.
    Secci D, Carradori S, Bolasco A, Chimenti P, Yáñez M, Ortuso F, Alcaro S (2011) Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. Eur J Med Chem 46:4846–4852. doi:10.1016/j.ejmech.2011.07.017 Google Scholar
  117. 117.
    Chimenti F, Bolasco A, Secci D, Bizzarri B, Chimenti P, Granese A, Carradori S (2010) Synthesis and characterization of new 3-acyl-7-hydroxy-6,8-substituted-coumarin and 3-acyl-7-benzyloxy-6,8-substituted-coumarin derivatives. J Heterocycl Chem 47:729–733. doi:10.1002/jhet.362 Google Scholar
  118. 118.
    Chimenti F, Carradori S, Secci D, Bolasco A, Chimenti P, Granese A, Bizzarri B (2009) Synthesis and biological evaluation of novel conjugated coumarin–thiazole systems. J Heterocycl Chem 46:575–578. doi:10.1002/jhet.110 CrossRefGoogle Scholar
  119. 119.
    Chimenti F, Secci D, Bolasco A, Chimenti P, Bizzarri B, Granese A, Carradori S, Yáñez M, Orallo F, Ortuso F, Alcaro S (2009) Synthesis, molecular modeling, and selective inhibitory activity against human monoamine oxidases of 3-carboxamido-7-substituted coumarins. J Med Chem 52:1935–1942. doi:10.1021/jm801496u PubMedCrossRefGoogle Scholar
  120. 120.
    Chimenti F, Secci D, Bolasco A, Chimenti P, Granese A, Carradori S, Befani O, Turini P, Alcaro S, Ortuso F (2006) Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of \(N, N^{\prime }\)-bis[2-oxo-2\(H\)-benzopyran]-3-carboxamides. Bioorg Med Chem Lett 16:4135–4140. doi: 10.1016/j.bmcl.2006.04.026 PubMedCrossRefGoogle Scholar
  121. 121.
    Petzer A, Pienaar A, Petzer JP (2013) The interactions of caffeine with monoamine oxidase. Life Sci 93:283–287. doi:10.1016/j.lfs.2013.06.020 PubMedCrossRefGoogle Scholar
  122. 122.
    Van der Walt MM, Terre’Blanche G, Petzer A, Lourens ACU, Petzer JP (2013) The adenosine \(\text{ A }_{{\rm 2A}}\) antagonistic properties of selected C8-substituted xanthines. Bioorg Chem 49:49–58. doi: 10.1016/j.bioorg.2013.06.006 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Simone Carradori
    • 1
  • Melissa D’Ascenzio
    • 1
  • Paola Chimenti
    • 1
  • Daniela Secci
    • 1
  • Adriana Bolasco
    • 1
  1. 1.Department of Drug Chemistry and TechnologiesSapienza University of RomeRomeItaly

Personalised recommendations