Molecular Diversity

, Volume 17, Issue 3, pp 515–524 | Cite as

Salvianolic acid A, a polyphenolic derivative from Salvia miltiorrhiza bunge, as a multifunctional agent for the treatment of Alzheimer’s disease

  • Ying Ying Cao
  • Ling Wang
  • Hu Ge
  • Xi Lin Lu
  • Zhong Pei
  • Qiong GuEmail author
  • Jun Xu
Full-Length Paper


The effects of Salvianolic acid A (Sal A) on the treatment of Alzheimer’s disease (AD) were investigated. Sal A significantly inhibits amyloid beta \((\text{ A }\beta )\) self-aggregation and disaggregates pre-formed \(\text{ A }\beta \) fibrils, reduces metal-induced \(\text{ A }\beta \) aggregation through chelating metal ions, and blocks the formation of reactive oxygen species (ROS) in SH-SY5Y cells. Sal A protects cells against \(\text{ A }\beta _{42}\)-induced toxicity. Furthermore, Sal A, possibly because of the effects of decreasing toxicity effects of \(\text{ A }\beta \) species, alleviates \(\text{ A }\beta \)-induced paralysis in transgenic Caenorhabditis elegans. Circular dichroism (CD) experiments and Molecular dynamic (MD) simulations demonstrate that Sal A inhibits \(\text{ A }\beta \) self-aggregation through binding to the C-terminus of \(\text{ A }\beta \), and therefore stabilizing the \(\alpha \)-helical conformations. Altogether, our data show that Sal A, as the multifunctional agent, is likely to be promising therapeutics for AD.


Alzheimer’s disease Salvianolic acid A Amyloid \(\beta \) Anti-oxidant Neuroprotecitve 



This work was funded in part of the National Natural Science Foundation of China (No. 81001372, 81173470), the National High-tech R&D Program of China (863 Program) (2012AA020307), the introduction of innovative R&D team program of Guangdong Province (No. 2009010058), and the External Cooperation Program of Chinese Academy of Sciences (No. P2010-KF08). Some strains were provided by the CGC, which was funded by NIG Office of Research Infrastructure Programs (P40 OD010440). The authors thank Dr. Chaolun Liang for the assistance with TEM assay.

Conflict of interest    The authors declare no competing financial interest.


  1. 1.
    Selkoe DJ (2000) The genetics and molecular pathology of Alzheimer’s disease–roles of amyloid and the presenilins. Neurol Clin 18:903–922. doi: 10.1016/S0733-8619(05)70232-70232 CrossRefPubMedGoogle Scholar
  2. 2.
    Carter J, Anderton B (1994) Molecular pathology of Alzheimer’s disease. Brit J Hosp Med 51:522–528Google Scholar
  3. 3.
    Selkoe DJ (2004) Cell biology of protein misfolding: the examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 6: 1054–1061. doi: 10.1038/Ncb1104-1054 CrossRefPubMedGoogle Scholar
  4. 4.
    Okonkwo AI, Li B, Takezaki M, Arbiser JL, Pace BS (2013) Discovery of novel fetal hemoglobin inducing drugs to treat sickle cell disease. J Invest Med 61:464–465Google Scholar
  5. 5.
    Finder VH (2010) Alzheimer’s disease: a general introduction and Pathomechanism. J Alzheimers Dis 22:S5–S19. doi: 10.3233/Jad-2010-100975 Google Scholar
  6. 6.
    McGeer PL, McGeer EG (1999) Inflammation of the brain in Alzheimer’s disease: implications for therapy. J Leukocyte Biol 65:409–415PubMedGoogle Scholar
  7. 7.
    Galasko D, Montine TJ (2010) Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark Med 4:27–36. doi: 10.2217/Bmm.09.89 CrossRefPubMedGoogle Scholar
  8. 8.
    Religa D, Strozyk D, Cherny RA, Volitakis I, Haroutunian V, Winblad B, Naslund J, Bush AI (2006) Elevated cortical zinc in Alzheimer disease. Neurology 67:69–75. doi: 10.1212/01.wnl.0000223644.08653.b5 CrossRefPubMedGoogle Scholar
  9. 9.
    Pierre JL, Fontecave M (1999) Iron and activated oxygen species in biology: the basic chemistry. Biometals 12:195–199. doi: 10.1023/A:1009252919854 CrossRefPubMedGoogle Scholar
  10. 10.
    Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5:421–432. doi: 10.1016/j.nurt.2008.05.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Jakob-Roetne R, Jacobsen H (2009) Alzheimer’s disease: from pathology to therapeutic approaches. Angew Chem Int Ed 48:3030–3059. doi: 10.1002/anie.200802808 CrossRefGoogle Scholar
  12. 12.
    Scott LE, Orvig C (2009) Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem Rev 109:4885–4910. doi: 10.1021/Cr9000176 CrossRefPubMedGoogle Scholar
  13. 13.
    Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci USA 94:9866–9868. doi: 10.1073/pnas.94.18.9866 CrossRefPubMedGoogle Scholar
  14. 14.
    Perry G, Taddeo MA, Petersen RB, Castellani RJ, Harris PLR, Siedlak SL, Cash AD, Liu Q, Nunomura A, Atwood CS, Smith MA (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16:77–81. doi: 10.1023/A:1020731021276 CrossRefPubMedGoogle Scholar
  15. 15.
    Choi JS, Braymer JJ, Nanga RPR, Ramamoorthy A, Lim MH (2010) Design of small molecules that target metal–a beta species and regulate metal-induced A beta aggregation and neurotoxicity. Proc Natl Acad Sci USA 107:21990–21995. doi: 10.1073/pnas.1006091107 CrossRefPubMedGoogle Scholar
  16. 16.
    Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Hrrison J, Masters CL, Targum S, Bush AI, Murdoch R, Wilson J, Ritchie CW, Grp PES (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting A beta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786. doi: 10.1016/S1474-4422(08)70167-4 CrossRefPubMedGoogle Scholar
  17. 17.
    Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting A beta amyloid deposition and toxicity in Alzheimer disease–a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691. doi: 10.1001/archneur.60.12.1685 CrossRefPubMedGoogle Scholar
  18. 18.
    Arbiser JLKS, van Leeuwen R, Hurwitz SJ, Selig M, Dickersin GR, Flint A, Byers HR, Chen LB (1998) Clioquinol-zinc chelate: a candidate causative agent of subacute myelo-optic neuropathy. Mol Med 4:665–670PubMedGoogle Scholar
  19. 19.
    Praticò D, Delanty N (2000) Oxidative injury in diseases of the central nervous system: focus on alzheimer’s disease. Am J Med 109:577–585. doi: 10.1016/S0002-9343(00)00547-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Allan Butterfield D (2002) Amyloid \(\beta \)-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res 36:1307–1313. doi:  10.1080/1071576021000049890 CrossRefGoogle Scholar
  21. 21.
    Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem 85:1394–1401. doi: 10.1046/j.1471-4159.2003.01786.x CrossRefPubMedGoogle Scholar
  22. 22.
    Chong ZZ, Li FQ, Maiese K (2005) Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 75:207–246. doi: 10.1016/j.pneurobio.2005.02.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Petersen RB, Nunomura A, Lee H, Casadesus G, Perry G, Smith MA, Zhu XW (2007) Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. J Alzheimers Dis 11:143–152PubMedGoogle Scholar
  24. 24.
    Praticò D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  25. 25.
    Ono K, Hasegawa K, Naiki H, Yamada M (2006) Anti-Parkinsonian agents have anti-amyloidogenic activity for Alzheimer’s beta-amyloid fibrils in vitro. Neurochem Int 48:275–285. doi: 10.1016/j.neuint.2005.11.001 CrossRefPubMedGoogle Scholar
  26. 26.
    Kim DD, Lee CY (2004) Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci 44:253–273. doi: 10.1080/10408690490464960 CrossRefGoogle Scholar
  27. 27.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Bio Med 23:134–147. doi:
  28. 28.
    Liu CL, Xie LX, Li M, Durairajan SS, Goto S, Huang JD (2007) Salvianolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling. PloS one 2:e1321. doi: 10.1371/journal.pone.0001321 CrossRefPubMedGoogle Scholar
  29. 29.
    Du GH, Zhang JT (1995) Protective effects of salvianolic acid A against impairment of memory induced by cerebral ischemia-reperfusion in mice. Yao xue xue bao 30:184–190. doi: 10.3321/j.issn:0513-4870.1995.10.001 PubMedGoogle Scholar
  30. 30.
    Wang XJ, Xu JX (2005) Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci Res 51:129–138. doi: 10.1016/j.neures.2004.10.001 CrossRefPubMedGoogle Scholar
  31. 31.
    Oh KS, Oh BK, Mun J, Seo HW, Lee BH (2011) Salvianolic acid A suppress lipopolysaccharide-induced NF-kappaB signaling pathway by targeting IKKbeta. Int Immunopharmacol 11:1901–1906. doi: 10.1016/j.intimp.2011.07.022 Google Scholar
  32. 32.
    Sperl B, Seifert MH, Berg T (2009) Natural product inhibitors of protein-protein interactions mediated by Src-family SH2 domains. Bioorg Med Chem Lett 19:3305–3309. doi: 10.1016/j.bmcl.2009.04.083 Google Scholar
  33. 33.
    Zhang HA, Gao M, Zhang L, Zhao Y, Shi LL, Chen BN, Wang YH, Wang SB, Du GH (2012) Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against \(\text{ H }_{2}\text{ O }_{2}\)-induced injury by increasing stress tolerance ability. Biochem Bioph Res Co 421:479–483. doi: 10.1016/j.bbrc.2012.04.021
  34. 34.
    Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid beta-peptide(1–40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37:11064–11077. doi: 10.1021/bi972979f Google Scholar
  35. 35.
    Molecular modeling software. SYBYL 7.3, Tripos, St. Louis, MO. (2006)Google Scholar
  36. 36.
    Cheng A, Best SA, Merz KM, Reynolds CH (2000) GB/SA water model for the Merck molecular force field (MMFF). J Mol Graph Model 18:273–282. doi: 10.1016/S1093-3263(00)00038-3 CrossRefPubMedGoogle Scholar
  37. 37.
    Accelrys Discovery Studio 2.5. Accelrys Int, San Diego, CA. (2009)Google Scholar
  38. 38.
    Crump JA, Scott LE, Msuya E, Morrissey AB, Kimaro EE, Shao JF, Stevens WS (2009) Evaluation of the Abbott m2000rt RealTime (TM) HIV-1 assay with manual sample preparation compared with the ROCHE COBAS (R) AmpliPrep (TM)/AMPLICOR (TM) HIV-1 MONITOR (R) v1.5 using specimens from East Africa. J Virol Methods 162:218–222. doi: 10.1016/j.jviromet.2009.08.013 CrossRefPubMedGoogle Scholar
  39. 39.
    Abraham MJ, Gready JE (2011) Optimization of parameters for molecular dynamics Simulation using smooth particle-Mesh Ewald in GROMACS 4.5. J Comput Chem 32:2031–2040. doi: 10.1002/Jcc.21773 CrossRefPubMedGoogle Scholar
  40. 40.
    Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012. doi: 10.1002/jcc.10349 CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang YH, Wooster MJ, Tutubalina O, Perry GLW (2003) Monthly burned area and forest fire carbon emission estimates for the Russian Federation from SPOT VGT. Remote Sens Environ 87: 1–15. doi: 10.1016/S0034-4257(03)00141-X CrossRefGoogle Scholar
  42. 42.
    Gaussian03, Revision C.02. Gaussian, Inc., Wallingford CT (2004).Google Scholar
  43. 43.
    Yang F, He K, Liu K (2009) Removal of the colloidal impurities in the purification of salvianolic acid B. Chin J Chromatogr 27: 379–381Google Scholar
  44. 44.
    Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247. doi: 10.1073/pnas.91.25.12243 CrossRefPubMedGoogle Scholar
  45. 45.
    Yang C, Zhu XL, Li JY, Shi RW (2010) Exploration of the mechanism for LPFFD inhibiting the formation of beta-sheet conformation of A beta(1–42) in water. J Mol Model 16:813–821. doi: 10.1007/s00894-009-0594-y CrossRefPubMedGoogle Scholar
  46. 46.
    Wang B, Liu JX, Meng HX, Lin CR (2012) Blocking effect of salvianolic acid A on calcium channels in isolated rat ventricular myocytes. Chin J Integr Med 18:366–370. doi: 10.1007/s11655-011-0707-1 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ying Ying Cao
    • 1
  • Ling Wang
    • 1
  • Hu Ge
    • 1
  • Xi Lin Lu
    • 2
  • Zhong Pei
    • 2
  • Qiong Gu
    • 1
    Email author
  • Jun Xu
    • 1
  1. 1.Research Center for Drug Discovery, School of Pharmaceutical SciencesSun Yat-Sen UniversityGuangzhouChina
  2. 2.Neurology Department of the First Affiliated Hospital Sun Yat-Sen UniversityGuangzhouChina

Personalised recommendations