Molecular Diversity

, Volume 17, Issue 2, pp 319–335 | Cite as

Plate-based diversity subset screening: an efficient paradigm for high throughput screening of a large screening file

  • Andrew S. Bell
  • Joseph Bradley
  • Jeremy R. Everett
  • Michelle Knight
  • Jens Loesel
  • John Mathias
  • David McLoughlin
  • James Mills
  • Robert E. Sharp
  • Christine Williams
  • Terence P. Wood
Full-Length Paper


The screening files of many large companies, including Pfizer, have grown considerably due to internal chemistry efforts, company mergers and acquisitions, external contracted synthesis, or compound purchase schemes. In order to screen the targets of interest in a cost-effective fashion, we devised an easy-to-assemble, plate-based diversity subset (PBDS) that represents almost the entire computed chemical space of the screening file whilst comprising only a fraction of the plates in the collection. In order to create this file, we developed new design principles for the quality assessment of screening plates: the Rule of 40 (Ro40) and a plate selection process that insured excellent coverage of both library chemistry and legacy chemistry space. This paper describes the rationale, design, construction, and performance of the PBDS, that has evolved into the standard paradigm for singleton (one compound per well) high-throughput screening in Pfizer since its introduction in 2006.


Rule of 40 (Ro40) High throughput screening (HTS) Plate based Diversity Subset Screening file 

Abbreviations and definitions


SciTegic/Accelrys’ level 4 extended connectivity fingerprints


File enrichment


Global diverse representative subset


High throughput screening

Legacy compound

A molecule synthesised as a singleton or in a small group of \(\le \) 10 compounds using methods such as stem reaction blocks [46]

Library compound

A molecule synthesised by large scale (10–100s or even 1,000s of compounds) parallel chemistry methods


Plate-based diversity subset


Parallel medicinal chemistry


Structure–activity relationships

Screening file

The entire set of compounds in an organisation’s high throughput screening collection

Screening subset

A screening collection produced by selecting compounds or plates from the entire screening file using either targeted or diversity approaches

Supplementary material

11030_2013_9438_MOESM1_ESM.docx (431 kb)
Supplementary material 1 (docx 430 KB)


  1. 1.
    Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R &D efficiency. Nat Rev Drug Discovery 11:191–200. doi:10.1038/nrd3681 CrossRefGoogle Scholar
  2. 2.
    Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R &D. Nat Rev Drug Discovery 10:428–438. doi:10.1038/nrd3405 CrossRefGoogle Scholar
  3. 3.
    Mullard A (2012) 2011 FDA drug approvals. Nat Rev Drug Discovery 11:91–94. doi:10.1038/nrd3657 CrossRefGoogle Scholar
  4. 4.
    Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discovery 8:959–968. doi:10.1038/nrd2961 CrossRefGoogle Scholar
  5. 5.
    Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152:53–61. doi:10.1038/sj.bjp.0707373 PubMedCrossRefGoogle Scholar
  6. 6.
    Hüser J (2006) High-throughput screening in drug discovery. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. 7.
    Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DV, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discovery 10:188–195. doi:10.1038/nrd3368 Google Scholar
  8. 8.
    Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588. doi:10.1016/j.coph.2009.08.004 PubMedCrossRefGoogle Scholar
  9. 9.
    Bakken GA, Bell AS, Boehm M, Everett JR, Gonzales R, Hepworth D, Klug-McLeod JL, Lanfear J, Loesel J, Mathias J, Wood TP (2012) Shaping a screening file for maximal lead discovery efficiency and effectiveness: elimination of molecular redundancy. J Chem Inf Model 52:2937–2949. doi:10.1021/ci300372a PubMedCrossRefGoogle Scholar
  10. 10.
    Xi H, Lunney EA (2011) The design, annotation, and application of a kinase-targeted library. Methods Mol Biol 685:279–291. doi:10.1007/978-1-60761-931-4_14 PubMedCrossRefGoogle Scholar
  11. 11.
    Yeap SK, Walley RJ, Snarey M, van Hoorn WP, Mason JS (2007) Designing compound subsets: comparison of random and rational approaches using statistical simulation. J Chem Inf Model 47:2149–2158. doi:10.1021/ci600382m PubMedCrossRefGoogle Scholar
  12. 12.
    Congreve M, Carr R, Murray C, Jhoti H (2003) A ’rule of three’ for fragment-based lead discovery? Drug Discovery Today 8:876–877PubMedCrossRefGoogle Scholar
  13. 13.
    Posner BA, Xi H, Mills JE (2009) Enhanced HTS hit selection via a local hit rate analysis. J Chem Inf Model 49:2202–2210. doi:10.1021/ci900113d PubMedCrossRefGoogle Scholar
  14. 14.
    Soulard P, McLaughlin M, Stevens J, Connolly B, Coli R, Wang L, Moore J, Kuo MS, LaMarr WA, Ozbal CC, Bhat BG (2008) Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry. Anal Chim Acta 627:105–111. doi:10.1016/j.aca.2008.04.017 PubMedCrossRefGoogle Scholar
  15. 15.
    Everett J, Gardner M, Pullen F, Smith G, Snarey M, Terrett N (2001) The application of non-combinatorial chemistry to lead discovery. Drug Discovery Today 6:779–785. doi:10.1016/S1359-6446(01)01876-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Feng BY, Shoichet BK (2006) Synergy and antagonism of promiscuous inhibition in multiple-compound mixtures. J Med Chem 49:2151–2154. doi:10.1021/jm060029z PubMedCrossRefGoogle Scholar
  17. 17.
    Bender A, Bojanic D, Davies JW, Crisman TJ, Mikhailov D, Scheiber J, Jenkins JL, Deng Z, Hill WA, Popov M, Jacoby E, Glick M (2008) Which aspects of HTS are empirically correlated with downstream success? Curr Opin Drug Discovery Dev 11:327–337Google Scholar
  18. 18.
    Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discovery 6:211–219. doi:10.1038/nrd2220 CrossRefGoogle Scholar
  19. 19.
    Larsson A, Jansson A, Aberg A, Nordlund P (2011) Efficiency of hit generation and structural characterization in fragment-based ligand discovery. Curr Opin Chem Biol 15:482–488. doi:10.1016/j.cbpa.2011.06.008 PubMedCrossRefGoogle Scholar
  20. 20.
    Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discovery 9:273–276. doi:10.1038/nrd3139 CrossRefGoogle Scholar
  21. 21.
    Hopkins A, Lanfear J, Lipinski C, Beeley L (2005) Chemical tools for indications discovery. Annu Rep Med Chem 40:339–348. doi:10.1016/s0065-7743(05)40022-6 CrossRefGoogle Scholar
  22. 22.
    Pearlman RS, Smith KM (1998) Novel software tools for chemical diversity. Perspect Drug Discovery Des 9–11:339–353. doi:10.1023/a:1027232610247 CrossRefGoogle Scholar
  23. 23.
    Crisman TJ, Jenkins JL, Parker CN, Hill WAG, Bender A, Deng Z, Nettles JH, Davies JW, Glick M (2007) “Plate cherry picking”: a novel semi-sequential screening paradigm for cheaper, faster, information-rich compound selection. J Biomol Screen 12:320–327. doi:10.1177/1087057107299427 Google Scholar
  24. 24.
    Sukuru SC, Jenkins JL, Beckwith RE, Scheiber J, Bender A, Mikhailov D, Davies JW, Glick M (2009) Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J Biomol Screen 14:690–699. doi:10.1177/1087057109335678 PubMedCrossRefGoogle Scholar
  25. 25.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23:3–25. doi:10.1016/s0169-409x(96)00423-1 CrossRefGoogle Scholar
  26. 26.
    Blagg J (2006) Structure–activity relationships for in vitro and in vivo toxicity. Annu Rep Med Chem 41:353–368. doi:10.1016/s0065-7743(06)41024-1 CrossRefGoogle Scholar
  27. 27.
    Spencer RW (1998) High-throughput screening of historic collections: observations on file size, biological targets, and file diversity. Biotechnol Bioeng 61:61–67PubMedCrossRefGoogle Scholar
  28. 28.
    Milne GM (2003) Pharmaceutical productivity—the imperative for new paradigms. Annu Rep Med Chem 38:383–396. doi:10.1016/s0065-7743(03)38036-4 CrossRefGoogle Scholar
  29. 29.
    Leardi R (2001) Genetic algorithms in chemometrics and chemistry: a review. J Chemom 15:559–569. doi:10.1002/cem.651 CrossRefGoogle Scholar
  30. 30.
    SciTegic/Accelrys (2006) Pipeline Pilot v5.1Google Scholar
  31. 31.
    Leo AJ, Hoekman D (2000) Calculating log P(oct) with no missing fragments: the problem of estimating new interaction parameters. Perspect Drug Discovery Des 18:19–38. doi:10.1023/a:1008739110753 CrossRefGoogle Scholar
  32. 32.
    Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. doi:10.1021/jm000942e PubMedCrossRefGoogle Scholar
  33. 33.
    Barnard JM, Downs GM (1997) Chemical fragment generation and clustering software. J Chem Inf Comput Sci 37:141–142. doi:10.1021/ci960090k CrossRefGoogle Scholar
  34. 34.
    Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893. doi:10.1021/jm9602928 PubMedCrossRefGoogle Scholar
  35. 35.
    Priest BT (2009) Future potential and status of selective sodium channel blockers for the treatment of pain. Curr Opin Drug Discovery Dev 12:682–692Google Scholar
  36. 36.
    Deacon M, Singleton D, Szalkai N, Pasieczny R, Peacock C, Price D, Boyd J, Boyd H, Steidl-Nichols JV, Williams C (2007) Early evaluation of compound QT prolongation effects: a predictive 384-well fluorescence polarization binding assay for measuring hERG blockade. J Pharmacol Toxicol Methods 55:238–247. doi:10.1016/j.vascn.2006.09.003 Google Scholar
  37. 37.
    Kaczorowski GJ, Garcia ML, Bode J, Hess SD, Patel UA (2011) The importance of being profiled: improving drug candidate safety and efficacy using ion channel profiling. Front Pharmacol 2:78. doi:10.3389/fphar.2011.00078 PubMedCrossRefGoogle Scholar
  38. 38.
    Gribbon P, Sewing A (2003) Fluorescence readouts in HTS: no gain without pain? Drug Discovery Today 8:1035–1043. doi:10.1016/S1359-6446(03)02895-2 PubMedCrossRefGoogle Scholar
  39. 39.
    Parker LC, Prince LR, Sabroe I (2007) Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 147:199–207. doi:10.1111/j.1365-2249.2006.03203.x PubMedCrossRefGoogle Scholar
  40. 40.
    Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol 26:1187–1192. doi:10.1038/nbt.1496 Google Scholar
  41. 41.
    Clackson T (2000) Regulated gene expression systems. Gene Ther 7:120–125. doi:10.1038/ PubMedCrossRefGoogle Scholar
  42. 42.
    Gribbon P, Schaertl S, Wickenden M, Williams G, Grimley R, Stuhmeier F, Preckel H, Eggeling C, Kraemer J, Everett J, Keighley WW, Sewing A (2004) Experiences in implementing uHTS-cutting edge technology meets the real world. Curr Drug Discovery Technol 1:27–35. doi:10.2174/1570163043484798 CrossRefGoogle Scholar
  43. 43.
    Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682–686. doi:10.1177/1087057105281365 PubMedCrossRefGoogle Scholar
  44. 44.
    Daylight Chemical Information Systems Inc. (2005) Daylight Toolkit v4.91Google Scholar
  45. 45.
    Tripos Inc. (2005) DiverseSolutionsGoogle Scholar
  46. 46.
    ThermoScientific. Accessed 26 Feb 2013

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Andrew S. Bell
    • 1
    • 2
  • Joseph Bradley
    • 1
    • 3
  • Jeremy R. Everett
    • 1
    • 4
  • Michelle Knight
    • 1
    • 5
  • Jens Loesel
    • 1
    • 6
  • John Mathias
    • 1
    • 7
  • David McLoughlin
    • 1
    • 8
  • James Mills
    • 1
    • 9
  • Robert E. Sharp
    • 10
    • 11
  • Christine Williams
    • 1
    • 12
  • Terence P. Wood
    • 1
    • 13
  1. 1.Pfizer Worldwide Research and DevelopmentSandwich, KentUK
  2. 2.Imperial CollegeLondonUK
  3. 3.Scitegrity LtdSandwich, KentUK
  4. 4.University of GreenwichChatham Maritime, KentUK
  5. 5.Canterbury Christchurch UniversityCanterbury, KentUK
  6. 6.Peter Fisk Associates LimitedCanterbury, KentUK
  7. 7.Pfizer ResearchCambridgeUSA
  8. 8.Eli Lilly & CompanyIndianapolisUSA
  9. 9.SandexisCanterbury, KentUK
  10. 10.Pfizer Worldwide Research & Development GrotonUSA
  11. 11.Intrexon CorporationSan CarlosUSA
  12. 12.Kent and Canterbury HospitalCanterbury, KentUK
  13. 13.TP & AAW ConsultancyCliftonville, KentUK

Personalised recommendations